Math, asked by studyhard21, 11 hours ago

the mean median mode and range for the following list of values are 8 9 10 10 10 11 11 11 11 13.. please give correct​

Answers

Answered by abhishekkrpandey462
2

Step-by-step explanation:

Range=maximum observation - minimum observation

=13-8

=5

mean=sum of all observation/no. of observation

=115/10=23/2=11.5

Answered by hotelcalifornia
1

GIven:

The list of values is 8, 9, 10, 10, 10, 11, 11, 11, 11,  13

The lowest value = 8

The highest value = 13

To find:

The mean, median, mode, and range of the given values

Formula:

Mean\;=\;\frac{Sum\;of\;all\;observations}{Total\;number\;of\;observations}

Median\;=\;\frac{{({\displaystyle\frac n2})}^{th}\;+\;{({\displaystyle\frac n2}\;+\;1)}^{th}}2 observation

∵ The number of values in even

Range\;=\;Highest\;value\;-\;Lowest\;value

Step-by-step explanation:

Mean:

Mean = \frac{8+9+10+10+10+11+11+11+11+13}{10}

Mean = \frac{104}{10}

The mean value is 10.4

Median:

Median = \frac{{({\displaystyle\frac{10}2})}^{th}\;+\;{({\displaystyle\frac{10}2}\;+\;1)}^{th}}2 observation

Median = \frac{{({\displaystyle\frac{10}2})}^{th}\;+\;{({\displaystyle\frac{10}2}\;+\;1)}^{th}}2

Median = \frac{5^{th}\;+\;6^{th}}2\; observation

Here, the 5^{th} observation is 10 and the 6^{th} observation is 11

So, Median ⇒ \frac{10\;+\;11}2\;=\;10.5

Mode:

The mode value for a set of numbers is always the most repeated number.

Here, the number 11 is repeated 4 times.

So, the mode value is 11

Range:

Range = 13\;-\;8

Range = 5

Answer:

The values of mean, median, mode, and range are 10.4,\;10.5,\;11,\;and\;5 respectively

Similar questions