Math, asked by Firdoush3232, 1 year ago

The mean of 10 number is 24. If one more number is included, the new mean is 25. Find the included number

Answers

Answered by avinashsingh530
27
I hope it will help u
Attachments:
Answered by TeenTitansGo
23
<u><b>
 \bold{Let  \: the  \: 10 \:  numbers \:  are  \: x_{1} ,  x_{2} , x_{3} , x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10} }
 </u>



We know,

\boxed{ \bold{Mean = \dfrac{sum \:  of \:  observations}{numbe r  \: of  \: observations}}}



Here,in the question ,

 \text{Sum  of  observations} = \: x_{1}  +  x_{2}  +  x_{3}  + x_{4} +  x_{5} + x_{6} + x_{7} + x_{8} + x_{9} +  x_{10} <br /> \\ <br /> \text{Number of observations = 10 }  \\ \text{Mean = 24}




Hence, by applying the formula of mean we get


 \text{24 }= \dfrac{\: x_{1}  +  x_{2}  +  x_{3}  + x_{4} +  x_{5} + x_{6} + x_{7} + x_{8} + x_{9} +  x_{10} }{ 10}




24 \times 10 = \: x_{1}  +  x_{2}  +  x_{3}  + x_{4} +  x_{5} + x_{6} + x_{7} + x_{8} + x_{9} +  x_{10} <br />  \\  \\ 240\: =  x_{1}  +  x_{2}  +  x_{3}  + x_{4} +  x_{5} + x_{6} + x_{7} + x_{8} + x_{9} +  x_{10}  \:  \:  \:  \:  \:  -  -  -  -  -  -  -    :  \: ( \: 1 \: )





<br /> \text{Given that one more is added. }\\   \text{Let the number which id added be} x_{11}




So,

 \text{Sum of observations} = x_{1}  +  x_{2}  +  x_{3}  + x_{4} +  x_{5} + x_{6} + x_{7} + x_{8} + x_{9} +  x_{10} + x_{11} \\  \text{<br />Number of observations = 10 + 1 = 11} \ \\  \text{<br />New mean = 25}


 \text{New mean} = \dfrac{ x_{1}  +  x_{2}  +  x_{3}  + x_{4} +  x_{5} + x_{6} + x_{7} + x_{8} + x_{9} +  x_{10} + x_{11}}{ 11  }




 \text{Putting the value of  \:} \bold{(  x_{1}  +  x_{2}  +  x_{3}  + x_{4} +  x_{5} + x_{6} + x_{7} + x_{8} + x_{9} +  x_{10} ) \: }\text{from ( 1 ) }



<br />25 = \dfrac{ 240 + x_{11}}{ 11 } <br /> \\  \\   25 \times 11 = 240 + x _{11} \\  \\ 275 - 240 = x_{11} \\  \\ 35 =  x_{11}





Thus, the number which was included is 35.
Similar questions