Math, asked by raisheetal007, 7 months ago

The mean of 2, x + 10, 19, 10, 13, 10 is 11. Find the value of ‘x’.​

Answers

Answered by rohithkumark2005
3

Answer:

Mean = 2 + x + 10 + 19 + 10 + 13 + 10/6 = 11

= 64 + x = 66

Therefore x = 2

Answered by Anonymous
4

{\large{\fcolorbox{aqua}{navy}{\fcolorbox{yellow}{blue}{\bf{\color{yellow}{⫷Question⫸}}}}}}

The mean of 2, \:(x + 10),\: 19,\: 10,\: 13, \:10 is 11. Find the value of ‘x’.

{\large{\fcolorbox{aqua}{navy}{\fcolorbox{yellow}{blue}{\bf{\color{yellow}{⫷Given⫸}}}}}}

The mean of 2, \:(x + 10),\: 19,\: 10,\: 13, \:10 is 11.

{\large{\fcolorbox{aqua}{navy}{\fcolorbox{yellow}{blue}{\bf{\color{yellow}{⫷To\:find⫸}}}}}}

The value of ‘x’.

{\large{\fcolorbox{aqua}{navy}{\fcolorbox{yellow}{blue}{\bf{\color{yellow}{⫷Solution⫸}}}}}}

We know that:

\large\blue{\boxed{\pink{Mean={\frac{Sum\: of \:the\: terms}{Number \:of \:terms}}}}}

So,

{\frac{[2+(x+10)+19+10+13+10]}{6}}=11

➳\:{\frac{(x+64)}{6}}=11

➳\:{(x+64)}={(11×6)}

➳\:{(x+64)}={66}

➳\:x=(66-64)

➳\:x=2

{\large{\fcolorbox{aqua}{navy}{\fcolorbox{yellow}{blue}{\bf{\color{yellow}{⫷Hence⫸}}}}}}

x=2

{\large{\fcolorbox{aqua}{navy}{\fcolorbox{yellow}{blue}{\bf{\color{yellow}{⫷Therefore⫸}}}}}}

The value of xis 2.

{\large{\fcolorbox{aqua}{navy}{\fcolorbox{yellow}{blue}{\bf{\color{yellow}{⫷Verification⫸}}}}}}

{\frac{[2+(x+10)+19+10+13+10]}{6}}=11

Substituting xwith 2.

➳\:{\frac{[2+(2+10)+19+10+13+10]}{6}}=11

➳\:{\frac{(2+12+19+10+13+10)}{6}}=11

➳\:{\frac{66}{6}}=11

➳\:11=11

So, L.H.S = R.H.S.

Hence, verified.

{\large{\fcolorbox{aqua}{navy}{\fcolorbox{yellow}{blue}{\bf{\color{yellow}{⫷Done⫸}}}}}}

\bold\green{\boxed{{\blue{✿}}{\pink{H}}{\blue{O}}{\green{P}}{\red{E}}{\purple{  }}{\orange{T}}{\pink{H}}{\blue{I}}{\green{S}}{\red{  }}{\purple{H}}{\orange{E}}{\pink{L}}{\blue{P}}{\green{S}}{\red{  }}{\purple{Y}}{\orange{O}}{\pink{U}}{\blue{✿}}}}

\bold\red{\boxed{{\blue{✿}}{\pink{H}}{\blue{A}}{\green{V}}{\red{E}}{\purple{  }}{\orange{A}}{\pink{  }}{\blue{N}}{\green{I}}{\red{C}}{\purple{E}}{\purple{  }}{\orange{D}}{\pink{A}}{\green{Y}}{\blue{✿}}}}

Similar questions