Math, asked by sharonshark32, 1 year ago

The mean of 5 observations x, x+2,x+4,x+6 and x+8 is 11 then the Value of x is

Answers

Answered by kaushik05
18

Given:

Mean= 11 and

observations are x, x+2 , x+4 , x+6

and x+8

As we know that

  \red{\boxed{mean =  \frac{sum \: of \: observations}{number \: of \: observtions} }}

So put the values

 \rightarrow \: 11 =  \frac{x   +  x + 2 + x + 4 + x + 6 + x + 8}{5}  \\   \rightarrow \: 11 =  \frac{5x + 20}{5}  \\  \rightarrow \: 11 \times 5 = 5x + 20 \\  \rightarrow \: 55 = 5x + 20 \\  \rightarrow \: 35 = 5x \\  \rightarrow  \: x =  \frac{35}{5}  = 7

Hence the value of the x is

  \boxed { \huge \blue{\mathfrak{7}}}

Answered by Anonymous
112

\huge{\red{\underline{\underline{\rm{Solution:}}}}}

\large{\underline{\bf{Given:}}}

\sf{\implies No.\;of\;observation=5}

\sf{\implies Observations=x,\;x+2,\;x+4,\;x+6,\;x+8}

\sf{\implies Mean=11}

\large{\underline{\bf{To\;Find:}}}

\sf{\implies Value\;of\;x.}

\large{\underline{\bf{Formula\;used:}}}

\sf{\implies Mean=\dfrac{Sum\;of\;observations}{No.\;of\;observations}}

\textsf{Now, put the values in the formula,}

\sf{\implies Mean=\dfrac{Sum\;of\;observations}{No.\;of\;observations}}

\sf{\implies 11=\dfrac{x+x+2+x+4+x+6+x+8}{5}}

\sf{\implies 55=5x+20}

\sf{\implies 55-20=5x}

\sf{\implies 35=5x}

\sf{\implies x=\dfrac{35}{5}}

\large{\boxed{\boxed{\blue{\sf{\implies x=7}}}}}

Hence, the value of x is 7.

Similar questions