Math, asked by gilliandonnabarrow01, 3 months ago

The mean of eight numbers in a set is 41. The mean of two numbers in the set is 29. Calculate the mean of the remaining 6 numbers

Answers

Answered by gauravmali846
0

Step-by-step explanation:

__________________________________________________________________________________________________________________

\large\pink{ {\boxed { Question :-}}}

⊙ The mean of eight numbers in a set is 41. The mean of two numbers in the set is 29. Calculate the mean of the remaining 6 numbers.

_________________________________________________________

 \Huge\boxed {{ \orange{Answer :-}}}

_________________________________________________________

 \implies {a+b+c+d+e+f+g+h}=328

 \implies\frac{a + b  + c + d + e + f + g + h }{8} =41

 \implies \frac{g + h}{2}=29

g + h=58

So  \implies a+b+c+d+e+f+g+h=328 Becomes...

 \implies \: a+b+c+d+e+f+58=328

 \implies \: a+b+c+d+e+f=270

 \implies \: Mean  \: of  \: these \:  six \:  numbers...

 \implies \frac{a + b + c + d + e + f + g}{6}= \frac{270}{6}=  \pink{\boxed {45}}

 \green{ \boxed{ \implies{45}}}

_________________________________________________________

Explanation:

The mean is that single value that if you multiply it by the count of values used to derive it you end up with their sum.

8 values with mean of 41

8 x 41 = 328 <-sum of all values.

2 values with mean of 29

2 x 29 = 58

~~~~~~~~~~~~~~~~~~~~~~~~

So the remaining 6 values must sum to 328 - 58 = 270

Thus the mean of the remaining 6 is 270÷6=45

_________________________________________________________

Similar questions