Math, asked by madhavivalaboju75, 1 month ago

The mean of following distribution is 62.8 . Find X . CI 0-20 20-40 40-60 60-80 80-100 100-120 f 5 8 X 12 7 8
DO IT IN ASSUMED MEAN METHOD .
IF YOU DO IT CORRECTLY IN ASSUMED MEAN METHOD I WILL MARK YOU AS BRAINIEST IF ANY ANSWERS NOT RELATED TO QUESTION I WILL REPORT YOU​

Answers

Answered by MysticSohamS
1

Answer:

hey here is your answer in above pics

pls mark it as brainliest

Attachments:
Answered by mathdude500
3

\large\underline{\sf{Solution-}}

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c|c|c|c}\sf Class\: interval&\sf Frequency\: (f_i)&\sf \: midvalue \: (x_i)&\sf \: u_i&\sf \: f_iu_i\\\frac{\qquad  \qquad}{}&\frac{\qquad  \qquad}{}\\\sf 0 - 20&\sf 5&\sf10&\sf - 2&\sf - 10\\\\\sf 20 - 40 &\sf 8&\sf30&\sf - 1&\sf - 8\\\\\sf 40-60 &\sf x &\sf50 \:  - A&\sf0&\sf0\\\\\sf 60 - 80&\sf 12&\sf70&\sf1&\sf12\\\\\sf 80-100&\sf 7&\sf90&\sf2&\sf14\\\\\sf 100-120&\sf 8&\sf110&\sf3&\sf24\\\frac{\qquad}{}&\frac{\qquad}{}\\\sf & \sf & \end{array}}\end{gathered}\end{gathered}\end{gathered}

We have now,

\rm :\longmapsto\:A = 50

\rm :\longmapsto\:h= 20

\rm :\longmapsto\: \sum \: f_i \:  =  \: 40 + x

\rm :\longmapsto\: \sum \: f_i u_i\:  =  \: 32

and

\rm :\longmapsto\: \bar{x} \:  =  \: 62.8

We know,

Mean using Step Deviation Method is given by

 \boxed{ \bf{ \:  \overline{x} \:  =  \: A \:  +  \:  \frac{\sum \: f_i u_i\:}{\sum \: f_i \:}  \times h}}

So, on substituting the values in this formula, we get

\rm :\longmapsto\:62.8 = 50 + \dfrac{32}{40 + x}  \times 20

\rm :\longmapsto\:62.8 - 50 =  \dfrac{32}{40 + x}  \times 20

\rm :\longmapsto\:12.8 =  \dfrac{32}{40 + x}  \times 20

\rm :\longmapsto\:\dfrac{128}{10} =  \dfrac{32}{40 + x}  \times 20

\rm :\longmapsto\:\dfrac{4}{10} =  \dfrac{1}{40 + x}  \times 20

\rm :\longmapsto\:4(40 + x) = 200

\rm :\longmapsto\:160 + 4x = 200

\rm :\longmapsto\:4x = 200 - 160

\rm :\longmapsto\:4x = 40

\bf\implies \:x = 10

Additional Information :-

1. Mean using Short Cut Method :

 \boxed{ \bf{ \:  \overline{x} \:  =  \: A \:  +  \:  \frac{\sum \: f_i d_i\:}{\sum \: f_i \:}  }}

2. Mean using Direct Method :-

 \boxed{ \bf{ \:  \overline{x} \:  =  \:  \frac{\sum \: f_i x_i\:}{\sum \: f_i \:}  }}

Similar questions