Math, asked by raniavs3hwaar, 1 year ago

The mean of n observations is X . IF the first item is increased by 1, second by 2 and so on, then the new mean is: 1. X+n 2. X+n/2 3. X+(n+1)/2 4. X+(n-1)/2

Answers

Answered by jhangir789
1

The correct option is,(3) X+(n+1)/2.

What is mean of observation?

  • An act or the power of seeing or taking notice of something His detailed description shows great powers of observation.
  • The gathering of information by noting facts or occurrences weather observations.
  • An opinion formed or expressed after watching or noticing It's not a criticism, just an observation.

According to the question:

Mean of $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}$ is $\mathrm{x}$

$$\begin{aligned}&\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\ldots+\mathrm{x}_{\mathrm{n}}}{\mathrm{n}}=\mathrm{x} \\&\Rightarrow \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}=\mathrm{nx}\end{aligned}$$

on adding 1 to x_{1}, 2 to $x_{2}$  and so on

we get  $x_{1}+1+x_{2}+2+\ldots+x_{n}+n$$$

$$\begin{aligned}&=\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{n}}\right)+(1+2+\ldots+\mathrm{n}) \\&=\sum \mathrm{n}+\frac{\mathrm{n}(\mathrm{n}+1)}{2}\end{aligned}$$

New mean $=\frac{\text { New summation }}{\mathrm{n}}$

$=\frac{\sum \mathrm{n}+\frac{\mathrm{n}(\mathrm{n}+1)}{2}}{\mathrm{n}}=\frac{2 \mathrm{nx}+\mathrm{n}(\mathrm{n}+1)}{2 \mathrm{n}}=\mathrm{x}+\left(\frac{\mathrm{n}+1}{2}\right)$

Hence, the new mean is X+(n+1)/2.

Learn more about mean of observation here,

https://brainly.in/question/2882407?msp_poc_exp=5

#SPJ2

Similar questions