Math, asked by goutamprem38, 6 months ago

The mean of p and 1/p is m therefore the mean of P3 and 1/P3 is ?

Answers

Answered by mathdude500
2

\huge\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Answer}}}}}}}} \\ \large\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Your~answer↓}}}}}}}}

mean \: of \: p \: and \:  \frac{1}{p } is \: m \\  =  &gt;  \: p \:  +  \frac{1}{p}  = 2m \\\large\bold\red{cubing \: both \: sides}  \\  {(p +  \frac{1}{p} )}^{3}  =  {(2m)}^{3}  \\  {p}^{3}  +  \frac{1}{ {p}^{3} }  + 3 \times p \times  \frac{1}{p} (p +  \frac{1}{p} ) =  {8m}^{3}  \\ {p}^{3}  +  \frac{1}{ {p}^{3} }  + 3 \times 2m = 8 {m}^{3}  \\ {p}^{3}  +  \frac{1}{ {p}^{3} }  + 6m =  {8m}^{3}  \\ {p}^{3}  +  \frac{1}{ {p}^{3} }   =  {8m}^{3}  - 6m \\ \large\bold\red{divide \: by \: 2} \\  \frac{1}{2} ({p}^{3}  +  \frac{1}{ {p}^{3} } ) =  {4m}^{3}  - 3m \\ \large\bold\red{ =  &gt; } \: mean \: of \: {p}^{3}  and \:  \frac{1}{ {p}^{3} }  \: is \: \small\bold\red{{4m}^{3}  - 3m}</p><p>

\huge \fcolorbox{black}{cyan}{♛Hope it helps U♛}

Answered by suman8615
1

Answer:

this is correct.........................

Attachments:
Similar questions