The mean of the following data is 38.2. Find the missing frequencies f1 and f2 if the total frequency
is 50.
Answers
Step-by-step explanation:
your question does not complete
Step-by-step explanation:
It is given that Mean is 38.2
\begin{gathered}mean = \frac{\Sigma xifi}{\Sigma fi} \\ \\ 38.2 = \frac{1195 + 25f1 + 45f2}{50} \\ \\ 1910 = 1195 + 25f1 + 45f2 \\ \\ 715 = 25f1 + 45f2 \\ \\ 5f1 + 9f2 = 143 \: \: \: \: \: eq1 \\ \\ 31 + f1 + f2 = 50 \\ \\ f1 + f2 = 19 \: \: \: \: eq2 \\ \\ \end{gathered}
mean=
Σfi
Σxifi
38.2=
50
1195+25f1+45f2
1910=1195+25f1+45f2
715=25f1+45f2
5f1+9f2=143eq1
31+f1+f2=50
f1+f2=19eq2
now solve eq1 and eq2 to find the value of f1 and f2
\begin{gathered}5f1 + 9f2 = 143 \\ \\ 5f1 + 5f2 = 95 \\ \\ - \: \: \: \: \: \: - \: \: \: \: \: - \\ \\ 4f2 = 48 \\ \\ f2 = 12 \\ \\ f1 + 12 = 19 \\ \\ f1 = 7 \\ \\ \end{gathered}
5f1+9f2=143
5f1+5f2=95
−−−
4f2=48
f2=12
f1+12=19
f1=7
Thus f1=7
and f2 = 12