Math, asked by halijoleprasad, 3 months ago

The mean of the following data is 38.2. Find the missing frequencies f1 and f2 if the total frequency

is 50.​

Answers

Answered by dverma040
0

Step-by-step explanation:

your question does not complete

Answered by tanvi2727
1

Step-by-step explanation:

It is given that Mean is 38.2

\begin{gathered}mean = \frac{\Sigma xifi}{\Sigma fi} \\ \\ 38.2 = \frac{1195 + 25f1 + 45f2}{50} \\ \\ 1910 = 1195 + 25f1 + 45f2 \\ \\ 715 = 25f1 + 45f2 \\ \\ 5f1 + 9f2 = 143 \: \: \: \: \: eq1 \\ \\ 31 + f1 + f2 = 50 \\ \\ f1 + f2 = 19 \: \: \: \: eq2 \\ \\ \end{gathered}

mean=

Σfi

Σxifi

38.2=

50

1195+25f1+45f2

1910=1195+25f1+45f2

715=25f1+45f2

5f1+9f2=143eq1

31+f1+f2=50

f1+f2=19eq2

now solve eq1 and eq2 to find the value of f1 and f2

\begin{gathered}5f1 + 9f2 = 143 \\ \\ 5f1 + 5f2 = 95 \\ \\ - \: \: \: \: \: \: - \: \: \: \: \: - \\ \\ 4f2 = 48 \\ \\ f2 = 12 \\ \\ f1 + 12 = 19 \\ \\ f1 = 7 \\ \\ \end{gathered}

5f1+9f2=143

5f1+5f2=95

−−−

4f2=48

f2=12

f1+12=19

f1=7

Thus f1=7

and f2 = 12

Similar questions