Math, asked by simichanda20, 1 month ago

The mean of the following distribution is 31.87. Find the value of a​

Attachments:

Answers

Answered by pardeshi1975
6

Step-by-step explanation:

QUESTION

find the value of x for the following distribution whose mean is 31.87 .

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{cccc}\sf x_i &\sf f_i\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}\\\sf 12&\sf \ 8 \\\\\sf 20 &\sf \ 16 \\\\\sf 27&\sf \ 48 \\\\\sf 33&\sf 90\\\\\sf x&\sf 30 \\\\\sf 54&\sf 8 \\\\\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{\bf{}}\end{array}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

x

i

12

20

27

33

x

54

f

i

8

16

48

90

30

8

ANSWER

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{cccc}\sf x_i &\sf f_i&\sf f_ix_i \\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\\\sf 12&\sf \ 8 &\sf 96 \\\\\sf 20 &\sf \ 16 &\sf 320 \\\\\sf 27&\sf \ 48&\sf 1296 \\\\\sf 33&\sf 90&\sf 2970\\\\\sf x&\sf 30 &\sf 30x \\\\\sf 54&\sf 8 &\sf 432 \\\\\sf Total &\sf \Sigma{f_i}=200&\sf \Sigma{f_ix_i}=5114 + 30x\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{\bf{}}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\end{array}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

x

i

12

20

27

33

x

54

Total

f

i

8

16

48

90

30

8

Σf

i

=200

f

i

x

i

96

320

1296

2970

30x

432

Σf

i

x

i

=5114+30x

Now ,

\sf mean \: = \dfrac{\sf \Sigma{f_ix_i}}{ \sf \Sigma{f_i}}mean=

Σf

i

Σf

i

x

i

\begin{gathered} \begin{gathered}\begin{gathered}\begin{gathered} \Longrightarrow\sf 31.87 = \frac{5114 + 30x}{200} \\\end{gathered}\end{gathered} \end{gathered} \end{gathered}

⟹31.87=

200

5114+30x

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \Longrightarrow\sf 6374 = 5114 + 30x \\\end{gathered}\end{gathered} \end{gathered} \end{gathered}

⟹6374=5114+30x

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \Longrightarrow\sf 30x=6374 - 5114 \\\end{gathered}\end{gathered} \end{gathered} \end{gathered}

⟹30x=6374−5114

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \Longrightarrow\sf 30x=1260 \\\end{gathered}\end{gathered} \end{gathered} \end{gathered}

⟹30x=1260

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \Longrightarrow\sf x = \dfrac{1260}{30} = 42 \\\end{gathered}\end{gathered} \end{gathered} \end{gathered}

⟹x=

30

1260

=42

\begin{gathered}\begin{gathered} \begin{gathered}\begin{gathered} \Longrightarrow \underline{ \boxed{\displaystyle \sf hence \: x = 42 }} \\ \\\end{gathered}\end{gathered}\end{gathered}\end{gathered}

hencex=42

____________________

additional information

mean of tabular data

If \sf x_1,x_2,x_3,....,x_nx

1

,x

2

,x

3

,....,x

n

are n observations with frequencies \sf f_1,f_2,f_3,....,f_nf

1

,f

2

,f

3

,....,f

n

respectively , then the mean x of these observation is given by

\sf x = \dfrac{f_1x_1 +f_2x_2 + f_3x_3 +... + f_nx_n} {f_1 +f_2 + f_3+... + f_n} = \dfrac{\Sigma{f_ix_i} }{\Sigma{f_i}}x=

f

1

+f

2

+f

3

+...+f

n

f

1

x

1

+f

2

x

2

+f

3

x

3

+...+f

n

x

n

=

Σf

i

Σf

i

x

i

where \SigmaΣ ( called sigma ) is the Greek letter representing summation.

Similar questions