Math, asked by tusharmishra011, 9 months ago

The mean of the following frequency distribution is 145. Find the values of f1 and f2.
Class Intervals Frequency
0 – 50 8
50 – 100 f1
100 – 150 32
150 – 200 26
200 – 250 f2
250 – 300 7
Total 100





Answers

Answered by mddilshad11ab
88

\sf\large\underline{Given:}

  • \rm{The\: mean\:of\: distribution=145}
  • \rm{The\:sum\:of\: frequency=100}

\sf\large\underline{To\: Find:}

  • \rm{The\: value\:of\:f_1\:f_2=?}

\sf\large\underline{Solution:}

  • By applying formula to calculate the unknown value of frequency here]

\sf\large\underline{Formula\: used:}

\rm{\implies Mean=\dfrac{\sum\:fx}{\sum\:f}}

  • Now find out the equation here]
  • Here notice 1st to the refer attachment]

\rm{\implies sum\:of\: frequency=100}

\rm{\implies 73+f_{1}+f_{2}=100}

\rm{\implies f_{1}+f_{2}=100-73}

\rm{\implies f_{1}+f_{2}=27------(i)}

  • similarly calculate 2nd equation by applying above formula here]

\rm{\implies 145=\dfrac{10675+75f_{1}+225f_{2}}{100}}

\rm{\implies 14500=10675+75f_{1}+225f_{2}}

\rm{\implies 75f_{1}+225f_{2}=14500-10675}

\rm{\implies 75f_{1}+225f_{2}=3825----(ii)}

  • In eq 1st multiplying by 75 than subtract]

\rm{\implies 75f_{1}+75f_{2}=2025}

\rm{\implies 75f_{1}+225f_{2}=3825}

  • By solving equation we get here]

\rm{\implies -150f_{2}=-1800}

\rm{\implies f_{2}=12}

  • Now putting the value of f2=12 in eq 1st]

\rm{\implies f_{1}+f_{2}=27}

\rm{\implies f_{1}+12=27}

\rm{\implies f_{1}+=27-12}

\rm{\implies f_{1}=15}

Hence,

\sf{\implies The\: value\:of\:f_{1}=15,\:\:f_{2}=12}

Attachments:
Answered by nigaranjum18
1

bu solving the problems

The mean of the following frequency distribution is 145. Find the values of f1 and f2.

Class Intervals Frequency

0 – 50 8

50 – 100 f1

100 – 150 32

150 – 200 26

200 – 250 f2

250 – 300 7

Total 100

solution

solution equation 1 and 2

F1=25.5 Nd F2=8.5

Similar questions