Math, asked by wassupnigga, 2 months ago

The mean of the following frequency distribution is 63.3 and the sum of all the frequencies is 50 compute the missing freqiencies f1 and f2
class 0-20,20-40,40-60,60-80,80-100,100-120
frequency 5 ,f1 ,10 ,f2 , 7 ,8

Attachments:

Answers

Answered by TheBrainlistUser
2

\large\underline\mathfrak\red{Given  \: :- }

  • Sum of frequency = 50

 \large\underline\mathfrak\red{To  \: find  \: :- }

  • f1 and f2

 \large\underline\mathfrak\red{Solution  \: :- }

We know that,

Sum of frequency is 50.

\sf\implies{5 + f1 + 10 + f2 + 7 + 8 = 50} \\ \sf\implies{f1 + f2 = 50 - 5 - 10 - 7 - 8} \\ \sf\implies{f1 + f2 = 20} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ \sf\implies{3f1 + 3f2 = 60} \:  \:  \:  \:  \: ...(1)  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \sf\implies{(multiplying \: both \: side \: by \: 3)} \:  \:  \:  \:  \:  \:  \:  \\ </p><p>

Subtract

And also we know that

mean is 62.8

\sf\implies{ \frac{∑f_1x_1}{N}  = 62.8} \\

\sf\implies{ \frac{30f_1+70f_2 + 2060}{50} = 62.8 } \\

\sf\implies{30f1 + 70f2 + 2060 = 62.8 \times 50} \\ \sf\implies{30f1 + 70f2 + 2060 = 3140} \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \sf\implies{30f1 + 70f2 = 3140 - 2060} \:  \:  \:  \:  \:  \:  \:  \:  \:  \\\sf\implies{30f1 + 70f2 = 1080}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \sf\implies{3f1 + 7f2 = 108} \:  \: ...(2) \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\ \sf\implies{(dividing \: both \: side \: by \: 10)} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Subtract equation (1) from equation (2)

\sf\implies{3f1 + 7f2 - (3f1 + 3f2) = 108 - 60}  \\ \sf\implies{3f1 + 7f2 - 3f1 - 3f2 = 48}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \sf\implies{4f2 = 48}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \sf\implies{f2 =  \frac{48}{4}  = 12}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Put value of f2 in equation (1)

\sf\implies{3f1 + 3f2 = 60} \:  \:  \:  \:   \\ \sf\implies{3f1 + 3(12) = 60}  \\ \sf\implies{3f1 + 36 = 60}  \:  \:  \:  \:  \:  \\ \sf\implies{3f1 = 60 - 36}  \:  \:  \:  \:  \:   \\ \sf\implies{3f1 = 24}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \sf\implies{f1 =  \frac{24}{3} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\ \sf\implies{f1 = 8}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

{\boxed{\sf{\therefore{f1 = 8  \: and  \: f2 = 12 }}}}

Similar questions