Math, asked by sushmitghumde910, 2 days ago

The mean of the following frequency table 50. But the frequencies f; and f 2 in class 20-40 and 60-80 are missing. Find the missing frequencies. Class: 0 - 20 20 - 40 40 - 60 60 - 80 80 - 100 Total Frequency: 17 fi 32 fi 19 120 (CBSE 2006C)​

Answers

Answered by Badboy330
327

Question:

  • The mean of the following frequency table 50. But the frequencies f 1 and f2 in class 20-40 and 60-80 are missing. Find the missing frequencies.

Given:

  • The mean of frequency 50 .but the frequencies f1 and f2 in class 20 -40 and 60 - 80 are missing.

To find:

  • Total frequency.

Solution:

As it is given that total of frequency is 120.

\sf \: So, \:  \:  N=\: ∑ f {\footnotesize{1} }\:  =  \: 120 \:   \:  \:  \:  \:  \: \:  \: (given) \\

 \dashrightarrow \sf \: 68 \:  +  \: f {\footnotesize{1}} \:  +  {\: f \footnotesize{2}} \:  =  \: 120 \\

 \dashrightarrow \sf \: f{ \footnotesize{1} }\:  +  \: f {\footnotesize{2} }\:  =  \: 120 \:  -  \: 68 \\

 \dashrightarrow \sf \: f{ \footnotesize{1} }\:  +  \: f {\footnotesize{2}} \:  =  52 \\

\sf Or \: \:  \: \: f {\footnotesize{2}} \:  =   \: 52 \:  - {f \footnotesize{1}}\\

\sf \: Mean \:  =  \:  \dfrac{ \:∑{f \footnotesize{i}} \:{ X{\footnotesize{i}}}}{ \:∑f \footnotesize {i} }

 \sf \: Mean \:  =  \:  \dfrac{3480 \:  +  \: 30  f {\footnotesize{1}} \:  +  \: 70 \:{ f \footnotesize{2}}}{120}  \\

 \sf \: 50 \:  =  \:  \dfrac{3480 \:  +  \: 30  f {\footnotesize{1}} \:  +  \: 70 \:{ f \footnotesize{2}}}{120}  \\

 \rm \: [ Given \: that \: mean  =  \: 50 ]

 \sf \: 50 \times120= 3480  \: +  \: 30f{ \footnotesize{1} }+70(52 \:  -  \: f \footnotesize{1})

 \sf[ \: Put \:  f{ \footnotesize2} \:  =  \: 52 \:  -  \: f{ \footnotesize{1}} \: ]

 \sf \: 6000  =   3480 \:  +  \: 30f {\footnotesize{1}}\:  +  \: 3640 \:  - 70f \footnotesize{1}

 \sf \: 6000 \:   =   \: 7120 \:  -  \: 40f \footnotesize1

 \sf \: 6000  \: -  \: 7120 =  - 40f \footnotesize1

 \sf\bf  -  \: 1120 =  - 40f {\footnotesize{1}} \:  \:  \:  \:  \: \:  \:  \:   \:  \:  \:  \:  \:  \:  \: 1120 = 40f \footnotesize{1}

 \rm[Negative \: sign \: from \: both \: sides \: cancel]

 \sf \: f{ \footnotesize{1}} =  \dfrac {\cancel{1120} \:  \: ^{28} }{ \cancel{40}}

 \sf  \large\: f {\footnotesize{1}} \:  =  {\boxed{ \boxed{ \pink{28}}}}

 \rm It \:  has  \: been  \: found  \: that \: f {\footnotesize{1}} = 28

 \rule{300px}{ \: 5e}

Also, it was earlier established that

 \sf  \large\: f{ \footnotesize{1}} \:  +  \: f {\footnotesize{2}} = 52

 \dashrightarrow\sf\: 28 \:  +  \: f {\footnotesize{2} }= 52 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  [ \: f{\footnotesize{1} } = 28 \: ]

\dashrightarrow \sf\:f {\footnotesize{2} }= 52  \: -  \: 28 \\

 \sf \large \dashrightarrow {\boxed{ \boxed{ \pink{24}}}}

\rm\large \: So, \: f {\footnotesize{1}} = 28 \: \: and \: \: f {\footnotesize{2}} = 24.

Your answer is 28 and 24.

Attachments:
Answered by amulya8tha
2

ans : F1=28

F2=24

thank you

Similar questions