# The mean of the number of sales of cars over a 3-month period is $87, and the standard deviation is 5. The mean of the commissions is $5225, and the standard deviation is $773. A. calculate the coefficient of variation. B. compare the variation of the two and give your comments regarding the variation.

## Answers

**Answer:**

## Heya................❤✌

**A****)**** ****Coefficient**** ****of**** ****Variation**** ****(****sales****)**** ****=**** ****(****5****/****8****7****)**** *********1****0****0**

** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****=**** ****5****.****7****4****%**

**Coefficient**** ****of**** ****Variation**** ****(**** ****commotions****)**** ****=**** ****(****7****7****3****/****5****2****2****5****)*********1****0****0**** ****=**** ****1****4****.****8****%**

**B****)**** ****Commissions**** ****are**** ****more**** ****variable**** ****&**** ****less**** ****stable**** ****&**** ****less**** ****uniform**** ****than**** ****sales****.**

*Explanation*** ****:**** ****Coefficient**** ****of**** ****variation**** ****is**** ****large**** ****indicates**** ****that**** ****the**** ****group**** ****is**** ****more**** ****variable**** ****&**** ****it**** ****is**** ****less**** **** ****s****t****a****b****l****e**** ****o****r**** ****l****e****s****s**** ****uniform****. **** ****If**** ****a**** ****coefficient**** ****of**** ****variation**** ****is**** ****small**** ****then**** ****it**** ****indicates**** ****that**** ****the**** ****group**** ****is**** ****less**** ****variable**** ****&**** ****it**** ****is**** ****more**** ****stable**** ****&**** ****more**** ****uniform****. **

*Explanation*

**Hope**** ****it’s**** ****helpful****.****.****.****.****.****.****. ****☺**

**Hope**

**it’s**

**helpful**

**.**

**.**

**.**

**.**

**.**

**.**

**.**

**☺**

**Answer:**

The coefficients of variation are **5.78** and **14.8** respectively.

**Step-by-step explanation:**

**Given:**

Mean of sales (n₁) = 87

Standard deviation (S₁) = 5

Mean of commissions (n₂) = 5225

Standard deviation (S₂) = 773

**To find:**

Coefficients of variation

**Formula:**

**Coefficient of variation = (S/n) × 100**

**Solution:**

For the number of **sales of cars**:

Mean (n₁) = 87 and standard deviation (S₁) = 5

Using the given formula, we get

Coefficient of variation = (S/n) × 100

Coefficient of variation = (5/87) × 100

Coefficient of variation = 0.0578 × 100

**Coefficient of variation = 5.78**

For **commissions**:

Mean (n₂) = 5225 and standard deviation (S₂) = 773

Using the given formula, we get

Coefficient of variation = (S/n) × 100

Coefficient of variation = (773/5225) × 100

Coefficient of variation = 0.1479 × 100

**Coefficient of variation = 14.8**

The coefficient of variation for the number of sales is less than that of commissions. This implies that the **data for the number of sales is less dispersed as compared to the data for the commissions**.

#SPJ2