The mean of the values 1, 2, 3, …….n with respective frequencies x, 2x, 3x …… nx is:
Answers
Answered by
36
Answer:
The mean of the values 1, 2, 3, …….n with respective frequencies x, 2x, 3x …… nx is:
⅓(2n+1).
Step-by-step explanation:
[ (1)(x) + (2)(2x) + (3)(3x) + ... + (n)(nx) ] / (x+2x+3x+...+nx)
= x(1² + 2² + 3² + ... + n²) / x(1+2+3+...+n)
= (1² + 2² + 3² + ... + n²) / (1+2+3+...+n)
= n(n+1)(2n+1)/6 ÷ n(n+1)/2
= ⅓(2n+1).
Answered by
9
Answer:
Step-by-step explanation:
The mean of frequency
Mean = ∑ fi xi/ Number of observation
∑fixi = x + 2²x +3²x +......n²x
= x ( 1 + 2²+3²+...n²)
= x n ( n +1) ( 2n+1) /6
{ ∵ 1 + 2²+3²+..n² = n (n+1) (2n +1 )/6}
Number of observation = n
Mean = x n ( n+1) (2n +1) / n×6
= x (n+1) (2n +1) /6
Attachments:
Similar questions