Math, asked by manjumausi16, 4 months ago

The Mean Of Three Numbers Is 10. Two Of The Numbers Are 9 And 14. What Is The Third Number?

Please Give Correct Answer ​

Answers

Answered by abishaangelin21
0

Step-by-step explanation:

12= 9+14+3rd number/3

12×3=23+3rd number

36- 23 = 3rd number

13 is the third number

Answered by AestheticSoul
5

Given

  • Mean of three numbers = 10
  • Two of the numbers = 9 and 14

To find

  • The third number

Solution

Let the third number be x.

Using formula :-

\huge{\dag}  \large  \boxed {\underline{\bf \red{ mean = \dfrac{sum \: of \: observations}{no. \: of \: observations}}}}

Substitute the values,

 \quad  : \implies  \sf \gray{10 =  \dfrac{9 + 14 + x}{3} } \\  \\  \\ \quad  : \implies  \sf \gray{10 =  \frac{23 + x}{3} } \\  \\  \\ \quad  : \implies  \sf \gray{10 \times 3 = 23 + x} \\  \\  \\ \quad  : \implies  \sf \gray{30 = 23 + x} \\  \\  \\ \quad  : \implies  \sf \gray{30  - 23 =  x} \\  \\  \\ \quad  : \implies  \sf \gray{7 = x} \\  \\  \\   \bf \gray{the \: value \: of \: x =  \pink7} \\  \\  \\  \therefore \bf \red{ \underline{the \: third \: number = 7 }}\bigstar

_______________________________________________

 \underbrace{\bf \purple{lets \: verify : }} \\  \\  \\\quad  : \implies  \sf \gray{10 =  \frac{9 + 14 + x}{3} }  \\  \\  \\  \tt{ substituting \: the \: value \: of \: x \: in \: rhs} \\  \\  \\ \quad  : \implies  \sf \gray{ \frac{9 + 14 + 7}{3} } \\  \\  \\ \quad  : \implies  \sf \gray{ \frac{30}{3} } \\  \\  \\ \quad  : \implies  \sf \gray{10} \\  \\  \\  \tt{lhs = rhs} \\  \\  \\   \dag \bf \orange{hence \: verified.}

_______________________________________________

Some related formulae :

\boxed {\begin{minipage}{9.2 cm}\\  \dag \: \underline{\Large\bf Formulas\:of\:Statistics} \\ \\ \bigstar \: \underline{\rm Mean:} \\ \\ \bullet\sf M=\dfrac {\Sigma x}{n} \\ \bullet\sf M=a+\dfrac {\Sigma fy}{\Sigma f} \\ \\ \bullet\sf M=A +\dfrac {\Sigma fy^i}{\Sigma f}\times c \\ \\ \bigstar \: \underline{\rm Median :} \\ \\ \bullet\sf M_d=\dfrac {n+1}{2} \:\left[\because n\:is\:odd\:number\right] \\ \bullet\sf M_d=\dfrac {1}{2}\left (\dfrac {n}{2}+\dfrac {n}{2}+1\right)\:\left[\because n\:is\:even\:number\right] \\ \\ \bullet\sf M_d=l+\dfrac {m-c}{f}\times i \\ \\ \bigstar \: {\boxed{\sf M_0=3M_d-2M}}\end {minipage}}

Similar questions