Math, asked by shambhavirai, 1 year ago

The mean of two samples of sizes 200 and 300 were found to be 25 and 10 respectively.
Find their mean and SD of combined distribution.

Pleaseee helpp. It's urgent

Answers

Answered by SanjayKumar11
0
Mean is 14.285
Combined distribution is 8000

shambhavirai: The answer for mean is given 16. Also I want the SD
Answered by shailendrachoubay216
0

Mean is 16, Standard deviation is 7.35.

Step-by-step explanation:

1. From Table

X_{i}          F_{i}             X_{i}F_{i}              F_{i}(X_{i}-\bar{X})^{2}  

 25          200      25×200      200\times (25-16)^{2}=16200

 10           300      10×300       300\times (10-16)^{2}=10800

              =500      =8000          = 27000

2. Where

  \sum F_{i}=500  

  \sum F_{i}X_{i}=8000

  \sum F_{i}(X_{i}-\bar{X})^{2}=27000

3. Mean

   \bar{X}=\frac{\sum F_{i}X_{i}}{\sum F_{i}}=\frac{8000}{500}=16

4. Variance

  \sigma ^{2}=\frac{\sum F_{i}(X_{i}-\bar{X})^{2}}{\sum F_{i}}=\frac{27000}{500}=54

     

5. Standard deviation (SD)

   SD=\sqrt{variance}=\sqrt{\sigma ^{2}}= \sqrt{54}=7.35

Similar questions