Social Sciences, asked by Sakrashitashi, 1 year ago

The meaning for "YJ"?

Answers

Answered by amar12454
0
the meaning of yj is youth justice

Answered by tanya836
3

GIVEN :–

• \:\: \bf \tan( \theta) = \dfrac{2x - k}{k \sqrt{3} }tan(θ)=

k

3

2x−k

• \: \: \bf \tan( \phi) = \dfrac{x \sqrt{3} }{2k - x}tan(ϕ)=

2k−x

x

3

TO PROVE :–

• \: \: \bf | \phi-\theta | = {30}^{\circ}∣ϕ−θ∣=30

SOLUTION :–

• We know that –

\: \: \bf \implies \large{ \boxed{ \bf \tan(x - y) = \dfrac{ \tan(x) - \tan(y)}{1 + \tan(x) \tan(y)}}}⟹

tan(x−y)=

1+tan(x)tan(y)

tan(x)−tan(y)

• So that –

\: \: \bf \implies \tan( \theta- \phi) = \dfrac{ \tan( \theta) - \tan( \phi)}{1 + \tan( \theta) \tan( \phi)}⟹tan(θ−ϕ)=

1+tan(θ)tan(ϕ)

tan(θ)−tan(ϕ)

• Now put the values –

\: \: \bf \implies \tan( \theta- \phi) = \dfrac{ \dfrac{2x - k}{k \sqrt{3} } - \dfrac{x \sqrt{3} }{2k - x} }{1 + \left(\dfrac{2x - k}{k \sqrt{3} } \right) \left(\dfrac{x \sqrt{3} }{2k - x} \right)}⟹tan(θ−ϕ)=

1+(

k

3

2x−k

)(

2k−x

x

3

)

k

3

2x−k

2k−x

x

3

\: \: \bf \implies \tan( \theta- \phi) = \dfrac{ \dfrac{(2x - k)(2k - x) - (k \sqrt{3})(x \sqrt{3} ) }{(k \sqrt{3})(2k - x)}}{1 + \left(\dfrac{2x - k}{k} \right) \left(\dfrac{x}{2k - x} \right)}⟹tan(θ−ϕ)=

1+(

k

2x−k

)(

2k−x

x

)

(k

3

)(2k−x)

(2x−k)(2k−x)−(k

3

)(x

3

)

\: \: \bf \implies \tan( \theta- \phi) = \dfrac{ \dfrac{4kx - 2 {x}^{2} - 2 {k}^{2} + kx-3kx}{(k \sqrt{3})(2k - x)}}{1 + \left(\dfrac{2 {x}^{2} - kx}{2 {k}^{2} - kx } \right)}⟹tan(θ−ϕ)=

1+(

2k

2

−kx

2x

2

−kx

)

(k

3

)(2k−x)

4kx−2x

2

−2k

2

+kx−3kx

\: \: \bf \implies \tan( \theta- \phi) = \dfrac{ \dfrac{2kx - 2 {x}^{2} - 2 {k}^{2}}{(k \sqrt{3})(2k - x)}}{ \left(\dfrac{2 {k}^{2} - kx + 2 {x}^{2} - kx}{2 {k}^{2} - kx } \right)}⟹tan(θ−ϕ)=

(

2k

2

−kx

2k

2

−kx+2x

2

−kx

)

(k

3

)(2k−x)

2kx−2x

2

−2k

2

\: \: \bf \implies \tan( \theta- \phi) = \dfrac{ \dfrac{2kx - 2 {x}^{2} - 2 {k}^{2}}{(k \sqrt{3})(2k - x)}}{ \left(\dfrac{2 {k}^{2} - 2kx + 2 {x}^{2} }{2 {k}^{2} - kx } \right)}⟹tan(θ−ϕ)=

(

2k

2

−kx

2k

2

−2kx+2x

2

)

(k

3

)(2k−x)

2kx−2x

2

−2k

2

\: \: \bf \implies \tan( \theta- \phi) = \dfrac{ \dfrac{2kx - 2 {x}^{2} - 2 {k}^{2}}{(k \sqrt{3})(2k - x)}}{ - \left(\dfrac{ - 2 {k}^{2} + 2kx - 2 {x}^{2} }{2 {k}^{2} - kx } \right)}⟹tan(θ−ϕ)=

−(

2k

2

−kx

−2k

2

+2kx−2x

2

)

(k

3

)(2k−x)

2kx−2x

2

−2k

2

\: \: \bf \implies \tan( \theta- \phi) = \dfrac{ \dfrac{1}{(k \sqrt{3})(2k - x)}}{ - \left(\dfrac{1}{2 {k}^{2} - kx } \right)}⟹tan(θ−ϕ)=

−(

2k

2

−kx

1

)

(k

3

)(2k−x)

1

\: \: \bf \implies \tan( \theta- \phi) = - \dfrac{2 {k}^{2} - kx}{(k \sqrt{3})(2k - x)}⟹tan(θ−ϕ)=−

(k

3

)(2k−x)

2k

2

−kx

\: \: \bf \implies \tan( \theta- \phi) = - \dfrac{k \cancel{(2k- x)}}{(k \sqrt{3}) \cancel{(2k - x)}}⟹tan(θ−ϕ)=−

(k

3

)

(2k−x)

k

(2k−x)

\: \: \bf \implies \tan( \theta- \phi) = - \dfrac{ \cancel k}{\cancel k \sqrt{3}}⟹tan(θ−ϕ)=−

k

3

k

\: \: \bf \implies \tan( \theta- \phi) = - \dfrac{1}{\sqrt{3}}⟹tan(θ−ϕ)=−

3

1

\bf \implies \tan( \theta- \phi) = - \tan( {30}^{ \circ} )⟹tan(θ−ϕ)=−tan(30 </p><p>∘</p><p> )</p><p></p><p>ㅤ</p><p></p><p>\: \: \bf \implies \tan( \theta- \phi) = \tan( - {30}^{ \circ} ) \:\:\:\:\:\:\:\:\:[ \: \: \because \: \: \tan ( - \theta ) = - \tan( \theta) ]\:⟹tan(θ−ϕ)=tan(−30 </p><p>∘</p><p> )[∵tan(−θ)=−tan(θ)]</p><p></p><p>ㅤ</p><p></p><p>\: \: \bf \implies ( \theta-\phi) = ( - {30}^{ \circ} )⟹(θ−ϕ)=(−30 </p><p>∘</p><p> )</p><p></p><p>ㅤ</p><p></p><p>\: \: \bf \implies | \theta-\phi | = | - {30}^{ \circ} |⟹∣θ−ϕ∣=∣−30 </p><p>∘</p><p> ∣</p><p></p><p>ㅤ</p><p></p><p>\: \: \bf \implies \large{ \boxed{ \bf |\phi- \theta | = {30}^{ \circ}}}⟹ </p><p>∣ϕ−θ∣=30 </p><p>∘</p><p> </p><p>	</p><p> </p><p></p><p>ㅤ</p><p></p><p>[tex]bf { \underbrace{ \bf Hence \: \: \: proved}}

Henceproved

Similar questions