Math, asked by nidishtn9415, 10 months ago

The measure of a central angle of a circle angle of a circle is 150degree and radius of a circle is 21 cm .find the area of the sector

Answers

Answered by Anonymous
2

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \boxed{\boxed { \huge  \mathcal\red{ solution}}}}

\star \underline{For\: a \:circle \:of\: radius\:\red{ <strong>R</strong><strong>}</strong>} \\ \underline{and\: of \:central \:angle \: \red{\theta}}\\</p><p>\bf\implies\boxed{\red{Area}_\blue{sector}=\frac{\pi R{}^{2}}{360\degree}\times \theta}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

given

\rightarrow\bf R=21 \:cm\\ \rightarrow \bf\theta=150\degree

\bf\therefore\bf \red{Area}_{sector}=\frac{\frac{22}{7}\times 21{}^{2}}{360\degree}\times 150\degree\\

 \bf \red{Area}_{sector}=\frac{\frac{22}{\cancel7}\times \cancel{21}\times21}{36\cancel0\degree}\times 15\cancel0\degree\\ \bf \red{Area}_{sector}=\frac{\cancel{22}\times\cancel3\times\cancel{21}\times15}{\cancel{36}}\\ \bf \red{Area}_{sector}=\frac{11\times7\times15}{2}\\  \bf \red{Area}_{sector}=\frac{1155}{2}\\ \boxed{  \bf \red{Area}_{sector}=577.5\:cm{}^{2}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

\mathcal{ \&amp;#35;\mathcal{answer with quality  }\:  \:  \&amp;#38;  \:  \: \&amp;#35;BAL }

Similar questions