The measure of two adjacent angles of a parallelogram are in the ratio 3:2. find the measure of each angle of parallelogram
Answers
Answer:
given below
Step-by-step explanation:
Let the measures of two adjacent angles, ∠A and ∠B, of parallelogram ABCD are in the ratio of 3:2.
Let ∠A = 3x and ∠B = 2x
We know that the sum of the measures of adjacent angles is 180º for a parallelogram.
∠A + ∠B = 180º
3x + 2x = 180º
5x = 180º
∠A = ∠C = 3x = 108º (Opposite angles)
∠B = ∠D = 2x = 72º (Opposite angles)
Thus, the measures of the angles of the parallelogram are 108º, 72º, 108º, and 72º.Let the measures of two adjacent angles, ∠A and ∠B, of parallelogram ABCD are in the ratio of 3:2.
Let ∠A = 3x and ∠B = 2x
We know that the sum of the measures of adjacent angles is 180º for a parallelogram.
∠A + ∠B = 180º
3x + 2x = 180º
5x = 180º
∠A = ∠C = 3x = 108º (Opposite angles)
∠B = ∠D = 2x = 72º (Opposite angles)
Thus, the measures of the angles of the parallelogram are 108º, 72º, 108º, and 72º.
Step-by-step explanation:
108,72,108,72
thats it mark brainliest plzzzz