Math, asked by agggeeta7752, 8 months ago

The measure of two angles of a quadrilateral is 110 degree and 100 degree. The remaining two angles are equal. What is the measure of each of the remaining two angles?

Answers

Answered by MaheswariS
6

\underline{\textbf{Given:}}

\textsf{The measure of two angles of a quadrilteral is}\;\mathsf{110^\circ\;and\;100^\circ}

\textsf{The remaining two angles are equal}

\underline{\textbf{To find:}}

\textsf{The measure of remaining two angles}

\underline{\textbf{Solution:}}

\textsf{Let ABCD be the given quadrilateral}

\mathsf{with\;\angle{A}=110^\circ\;\;and\;\;\angle{B}=100^\circ}

\mathsf{Sum\;of\;all\;interior\;angles\;of\;quadrilateral\;is\;360^\circ}

\implies\mathsf{\angle{A}+\angle{B}+\angle{C}+\angle{D}=360^\circ}

\implies\mathsf{110^\circ+100^\circ+\angle{C}+\angle{D}=360^\circ}

\implies\mathsf{210^\circ+\angle{C}+\angle{D}=360^\circ}

\mathsf{But\;\angle{C}=\angle{D}}

\implies\mathsf{210^\circ+\angle{C}+\angle{C}=360^\circ}

\implies\mathsf{2\angle{C}=360^\circ-210^\circ}

\implies\mathsf{2\angle{C}=150^\circ}

\implies\mathsf{\angle{C}=\dfrac{150^\circ}{2}}

\implies\boxed{\mathsf{\angle{C}=75^\circ}}

\therefore\underline{\mathsf{The\;remaining\;two\;angles\;are\;75^\circ\;\;and\;\;75^\circ}}

\underline{\textbf{Find more:}}

Similar questions