Math, asked by AvaniSundriyal, 2 months ago

The measure of two complementary angles is (3x-5) degree and (x+15) degree. Find the angles.

Answers

Answered by PanchalKanchan
8

Question :

The measure of two complementary angles is (3x-5) degree and (x+15) degree. Find the angles.

Answer :

\sf\pink{Given:}

  • measure of one of the complimentary angles is 3x - 5

  • measure of the other complementary angle is x + 15

\sf{To\:find:}

  • The angles ?

Explanation :

Rule :

Complementary angles add up to 90°

Equation Formed :

  • First angle + second angle = 90°

\\ \longrightarrow\sf{ 3x - 5 + x + 15 = 90}

\\ \longrightarrow\sf{ 3x + x + 15 - 5 = 90}

\\ \longrightarrow\sf{ 4x + 10 = 90}

\\ \longrightarrow\sf{ 4x  = 90 - 10}

\\ \longrightarrow\sf{ 4x  = 80}

\\ \longrightarrow\sf{ x  = \dfrac{80}{4}}

\\ \longrightarrow\sf{ x  = 20}

  • first angle is 3x - 5

\sf\\ \longrightarrow\sf{ 3\times 20 - 5}

\sf\\ \longrightarrow\sf{ 60 - 5}

\sf\\ \longrightarrow\sf{  55}

Therefore one angle is 55°

  • other angle is x + 15

\sf\\ \longrightarrow\sf{20 + 15}

\sf\\ \longrightarrow\sf{35}

Therefore the other angle is 35°

\sf\\ \longrightarrow\sf{20 + 15}

Similar questions