Math, asked by tiwarisudha1997, 5 months ago

the measurement of two adjacent angle of a parallelogram are in the ratio 3 ratio 2 find the measurement of each of the angle of the parallelogram​

Answers

Answered by 360Degree
171

\large{\underline{\underline{\sf{ \maltese \: {Given:-}}}}}

  • The measures of two adjacent angles of a parallelogram = 3:2

\large{\underline{\underline{\sf{ \maltese \: {To  \: find:-}}}}}

  • The measure of each of the angles of the parallelogram = ?

\large{\underline{\underline{\sf{ \maltese \: {Solution:-}}}}}

Let the angles = 3x and 2x

~ We know that:

\qquad \bull \: { \bf {Adjacent \: angles \: of \: a \: parallelogram \: = 180 ^\circ}}

 \qquad \quad{:} \longrightarrow \sf{3x + 2x = 180}

 \qquad \quad{:} \longrightarrow \sf{5x = 180}

 \qquad \quad{:} \longrightarrow \sf{x =  \dfrac{180}{5} }

 \qquad \quad{:} \longrightarrow \sf{x =   \cancel\dfrac{180}{5} }

 \qquad \quad{:} \longrightarrow  \underline{ \boxed{\sf{x =   36 }}}

~ Angles of the parallelogram:

 \qquad \quad \blacksquare \:  \sf{3x^\circ = \bigg( 3 \times 36 \bigg)^\circ =   \underline{\underline{108^\circ}}}

 \qquad \quad \blacksquare \:  \sf{2x^\circ = \bigg( 2 \times 36 \bigg)^\circ =   \underline{\underline{72^\circ}}}

~ Verification:

 \qquad \quad{:} \longrightarrow \sf{3x + 2x = 180}

 \qquad \quad{:} \longrightarrow \sf{ \bigg(3 \times 36 \bigg) +  \bigg(2 \times 36 \bigg) = 180} \\

 \qquad \quad{:} \longrightarrow \sf{108  + 72 = 180} \\

 \qquad \quad{:} \longrightarrow  \underbrace{\sf{180= 180}} \\

\LARGE\underbrace{\bf{Hence \: Verified!!}} \\

Answered by silent9
32

 \\ \\

We know that ,

Opposite Sides of parallelogram are parallel...

So, the adjecent angle will be interior angles of the transversal....which has the sum 180°.

So, let 3x and 2x be the angles....

➜ 3x + 2x = 180°

➜ 5x = 180°

➜ x = 36°

So, the angles are ...

3x = 36 × 3 = 108°

2x = 2 × 36 = 72°

Now ,

We know ,

opposite angles of parallelegram are equal...

So, the angles of parallelogram are 108°,72°,108°,72°.

Similar questions