Math, asked by jangamatharva609, 4 months ago

the measures of angle of a triangle are in the ratio 2:3:4. find the measures?

Answers

Answered by ripasajem
0

Answer:

let the common variable for the ratio be 'x'

= 2x 3x 4x

= 2+3+4

= 9x

Answered by aryan073
4

Given :

The measures of angle of a triangle are in The ratio 2:3:4

➟ Let x be the angles of a triangle are 2x, 3x, 4x .

To find :

➡ The measures=?

solution :

➤ As we know that ,

Sum of the angles in the triangle =180 degree

 \bf \green{ according \: to \: given \: conditions}

 \implies \large \sf \: 2x + 3x + 4x = 180 \degree \\  \\  \implies \large \sf5x + 4x = 180  \degree \:  \\  \\   \implies \large \sf 9x = 180 \degree \:  \\  \\  \implies \large \sf \: x =  \frac{180 \degree}{9}  = 20 \degree \\  \\  \implies \boxed{ \large \sf x = 20 \degree}

  \implies\large \sf \: then \: angles \: of \: triangle = 2x = 2 \times 20 \degree \:  = 40 \degree \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large \sf \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   4x = 4 \times 20 \degree = 80 \degree \\  \\  \large \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: 3x \:  = 3 \times 20 \degree = 60 \degree

This Triangle is acute angled triangle.

Similar questions