The measures of angles of a triangle are (x - 40 ) , (x+40) , (x+30) what kind of triangle is this ?
Answers
Answered by
3
Answer:
The sum of measures of angles of a triangles is 180 degrees
The sum of measures of angles of a triangles is 180 degrees∴(x−40)+(x−20)+(x/2−10)=180
The sum of measures of angles of a triangles is 180 degrees∴(x−40)+(x−20)+(x/2−10)=180 o
The sum of measures of angles of a triangles is 180 degrees∴(x−40)+(x−20)+(x/2−10)=180 o
The sum of measures of angles of a triangles is 180 degrees∴(x−40)+(x−20)+(x/2−10)=180 o ∴5x/2−70
The sum of measures of angles of a triangles is 180 degrees∴(x−40)+(x−20)+(x/2−10)=180 o ∴5x/2−70 o
The sum of measures of angles of a triangles is 180 degrees∴(x−40)+(x−20)+(x/2−10)=180 o ∴5x/2−70 o =180
The sum of measures of angles of a triangles is 180 degrees∴(x−40)+(x−20)+(x/2−10)=180 o ∴5x/2−70 o =180 o
The sum of measures of angles of a triangles is 180 degrees∴(x−40)+(x−20)+(x/2−10)=180 o ∴5x/2−70 o =180 o
The sum of measures of angles of a triangles is 180 degrees∴(x−40)+(x−20)+(x/2−10)=180 o ∴5x/2−70 o =180 o ∴5x/2=250
The sum of measures of angles of a triangles is 180 degrees∴(x−40)+(x−20)+(x/2−10)=180 o ∴5x/2−70 o =180 o ∴5x/2=250 o
The sum of measures of angles of a triangles is 180 degrees∴(x−40)+(x−20)+(x/2−10)=180 o ∴5x/2−70 o =180 o ∴5x/2=250 o
The sum of measures of angles of a triangles is 180 degrees∴(x−40)+(x−20)+(x/2−10)=180 o ∴5x/2−70 o =180 o ∴5x/2=250 o ∴5x=500
The sum of measures of angles of a triangles is 180 degrees∴(x−40)+(x−20)+(x/2−10)=180 o ∴5x/2−70 o =180 o ∴5x/2=250 o ∴5x=500 o
The sum of measures of angles of a triangles is 180 degrees∴(x−40)+(x−20)+(x/2−10)=180 o ∴5x/2−70 o =180 o ∴5x/2=250 o ∴5x=500 o
The sum of measures of angles of a triangles is 180 degrees∴(x−40)+(x−20)+(x/2−10)=180 o ∴5x/2−70 o =180 o ∴5x/2=250 o ∴5x=500 o ∴x=100
The sum of measures of angles of a triangles is 180 degrees∴(x−40)+(x−20)+(x/2−10)=180 o ∴5x/2−70 o =180 o ∴5x/2=250 o ∴5x=500 o ∴x=100 o
Step-by-step explanation:
Hope it's helps you mark me as a brainlist answer
❤️✌️✌️✌️✌️✌️✌️✌️✌️✌️✌️
Similar questions