Math, asked by atharvajangam42, 4 months ago

The measures of angles of a triangle are xº, (x-20)º,(x-40)º, find x ​

Answers

Answered by aryan073
5

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\underline{\textbf{\textsf{\orange{Solution:}}}}

 \:  \large \red {\bold{ \underline{ \: step \: by \: step \: explaination : }}}

 \bullet \bf{ \: sum \: of \: sides \: of \: triangle = 180 \degree}

 \:   \underline{\bf{according \: to \: given \: conditions}}

\implies\displaystyle\sf{ \angle A+\angle B+\angle C=180 \degree}

  \\ \implies \displaystyle \sf \: x \degree + (x - 20) \degree + (x - 40) \degree = 180 \degree

 \:  \implies \displaystyle \sf \: 3x \degree \:  - 60 \degree = 180 \degree

 \:  \:  \implies \displaystyle \sf \: 3x \degree - 60  \degree- 180 \degree = 0

 \:  \:  \implies \displaystyle \sf \: 3x \degree  = 240 \degree

 \:  \:  \implies \displaystyle \sf \: x \degree =  \frac{240}{3}  = 80 \degree

\implies\displaystyle\sf{ \angle A= x\degree=80\degree}

\implies\displaystyle\sf{\angle B=(x-20)\degree=(80-20)\degree=60\degree}

\implies\displaystyle\sf{\angle C=(x-40)\degree=(80-40)\degree=40\degree}

\green{▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬}

Answered by zoyaaaa13
2
By Angle sum property of a triangle,
x + (x-20)+(x-40) = 180
=> x + x - 20 + x - 40 = 180
=> 3x - 60 = 180
=> 3x = 180 + 60
=> x= 240 / 3
=> x = 80
and we got it!
Similar questions