The measures of the angles of a triangle are x plus 20 degrees , 2x minus 30 degrees and 3x minus fifty degrees . Find each of these angles.
Answers
Answered by
2
Step-by-step explanation:
Given:
Measure of angles of triangle:
(x+20, 2x-30, 3x-50)
Sum of all angles of triangle= 180
=>(x+20)+(2x-30)+(3x-50)= 180
=> x = 40
Therefore, angles of the triangle:
(60, 50, 70)
Hence, Solved.
Hope, it helps!
Answered by
3
Answer:
The three angles are 60°,50° & 70°
Step-by-step explanation:
Angle sum property of a triangle states that: Sum of three angles of a triangle is 180°.
therefore, x+20°+2x-30°+3x-50°=180°
6x-60°=180°
x-10°=30° [by dividing equation by 6]
x=30°+10°
x=40°
Thus, the three angles are
A--- x + 20°=40°+20°
=60°
B--- 2x-30°=2(40°)-30°
=80°-30°
=50°
C--- 3x-50°=3(40°)-50°
=120°-50°
=70°
Similar questions