Math, asked by sub0703200, 1 month ago

The measures of two adjacent Angeles of parallelogram are in the ratio 5 : 1. Find the measure of each Angeles.​

Attachments:

Answers

Answered by mhdfariz
3

Answer:

c) is the correct answer

Step-by-step explanation:

5a+1a=180°(adjacent angles)

6a=180°

a=180/6

a=30

=5×a=5×30=150°

=1×a=1×30=30°

Answered by XxMrZombiexX
214

\large\blue{\underline{\underline{\sf{\purple{{Given \;that :-}}}}}}

↪The measure of two adjacent angles of parallelogram are in the ratio 5 : 1

\large\blue{\underline{\underline{\sf{\purple{{To \;Find:-}}}}}}

 \sf↪ find \: the \: measure \: of \: each \: angeles \:

\large\blue{\underline{\underline{\sf{\purple{{Solution:-}}}}}}

 \qquad \bf \:Let  \: the  \: parallelogram  \: be  \:  \: ABCD

↪ \sf \red{ \qquad \: Given } \: adjacent  \: angles  \: are \:  in  \: the \:  ratio  \: 1 : 5  \\

↪ \sf \: let \: these \: two \: angles \: be  \: \angle A\:  \: and  \: \angle B\: \\  \\  \\ ↪\dfrac{\angle A }{\angle B}

 \\  \green{\bf  \: Let \:  \angle A = 1x  \:  \: and  \:  \: \angle B = 5x}

 \bf \: we \: know \: that \:  :

 \longrightarrow \boxed{ \sf \: {Adjacent  \: angles  \: of  \: a  \: parallelogram \:  are \: supplementary }} \\

According to the question

 \\ \tt\orange \longmapsto \: \angle A \:  \:  +  \:  \:  \angle B  \:  \: = 180° \\

putting values

 \\ \tt\orange \longmapsto1x \:  \:  +  \:  \: 5x \:  \:  = 180  \\  \\  \\  \\ \tt\orange \longmapsto 6x \:  \:  = 180° \\  \\  \\   \\ \tt\orange \longmapsto \: x \:  \:  =  \:  \:   \cancel\dfrac{180°}{6}  \\  \\  \\  \\ \tt\orange \longmapsto \frak{x \:  \:  = \:  \: 30 °}

Therefore,

The first angle A = 1x

\\ \sf\orange \longrightarrow \angle  A_{(parallelogram)}= 1x \\  \\ \\ \sf\orange \longrightarrow \angle  A_{(parallelogram)}= 1(30) \\  \\  \\ \sf\orange \longrightarrow \angle   \frak{A_{(parallelogram)}= 30°}

and second angle B = 5x

\\ \sf\orange \longrightarrow \angle  B_{(parallelogram)}= 5x \\  \\  \\ \sf\orange \longrightarrow \angle  B_{(parallelogram)}= 5(30)\\  \\ \\ \sf\orange \longrightarrow \angle    \frak{B_{(parallelogram)}= 150°}

Now,

↪Opposite angles of a parallelogram are equal

 \:  \sf↪\angle C = \angle B = 30° \\ \bf \: and  \\ \sf↪\angle B = \angle D = 150°

_________________________

 \bf \:  \huge \red{a)30°, 150°✔}

Attachments:
Similar questions