Math, asked by antarikshmahapatra, 9 months ago

The median of the data is 6,15,120,50,100,80,10,15,8,10,15 is

Answers

Answered by rohitsoni2gpdc5si
1

Answer:

TOFIND,

\sf\dashrightarrow perimeter\:of\:rectangle.⇢perimeterofrectangle.

USING FORMULA,

\sf\large\:therefore diagonal\:of\:the\:rectangle = \sqrt{(breadth)^2+(length)^2}thereforediagonaloftherectangle=

(breadth)

2

+(length)

2

\sf\therefore 13= \sqrt{(b)^2+(12)^2}∴13=

(b)

2

+(12)

2

\sf\therefore 13= \sqrt{(b)^2+144}∴13=

(b)

2

+144

\sf\therefore (13)^2= (b)^2+144∴(13)

2

=(b)

2

+144

\sf\therefore 169=(b)^2+144∴169=(b)

2

+144

\sf\therefore 169-144=b^2∴169−144=b

2

\sf\therefore b^2= 25∴b

2

=25

\sf\therefore b= \sqrt{25}∴b=

25

\sf\therefore b= \pm 5∴b=±5

\sf\therefore note:- \:breadth\:is\:never\:negative,∴note:−breadthisnevernegative,

therefore,

\sf\dashrightarrow breadth\:of\:rectangle\:is\:5\:cm⇢breadthofrectangleis5cm

\large{\boxed{\bf{\therefore breadth=5cm}}}

∴breadth=5cm

NOW,

WE KNOW,

BREADTH =5CM

LENGTH=12CM

\sf\therefore finding\:the\:perimeter\:of\:rectangle,∴findingtheperimeterofrectangle,

USING FORMULA,

\sf\large\therefore perimeter=2 \times (length+breadth)∴perimeter=2×(length+breadth)

\sf\implies 2 \times (12+5)⟹2×(12+5)

\sf\implies 2 \times (17)⟹2×(17)

\sf\implies 34cm⟹34cm

\large{\boxed{\bf{\therefore perimeter\:of\:rectangle\:is\:34cm}}}

∴perimeterofrectangleis34cm

__________________

✯ADDITIONAL INFORMATION,

✯DIAGRAM OF RECTANGLE,

$$\setlength{\unitlength}{1.6mm}\begin{picture}(5,6)\put(0,25){\line(1,0){35}}\put(0,0){\line(1,0){35}}\put(0,0){\line(0,1){25}}\put(35,0){\line(0,1){25}}\put(17,-2){5cm}\put(18,-2){}\put(35,15){34cm}\put(18,0){ }\end{picture}$$

FEW FORMULAS FOR LEARNING,

AREA OF SQUARE=(SIDE)²

PERIMETER OF SQUARE = 4 ×(SIDE)

AREA OF TRIANGLE=1/2 × base ×height

AREA OF TRAPEZIUM= 1/2 × (A+B)

VOLUME OF CUBE =(L)³

VOLUME OF CUBOID= L×B×H

VOLUME OF CONE = 1/3 πr²h

VOLUME OF CYLINDER=πr²h

Answered by manishrealme5
1

Answer:

80 is median....................

Similar questions