Math, asked by rahul4215, 9 months ago

The median of the distribution given below is 14.4. Find the values of x and y. If the total frequency is 20​

Attachments:

Answers

Answered by Anonymous
218

\huge\bf\red{\underline{\underline{Given}}}\::

\begin{cases}\sf\gray{The \ median \ of \  the \ distribution \ is \ 14.4} \\ \sf\gray{Total \ frequency \ is \ 20}\end{cases}

\huge\bf\green{\underline{\underline{To\:Find}}}\::

\begin{cases}\sf\gray{Find \ the \ value \  of \ x \ and \ y}\end{cases}

\huge\bf\purple{\underline{\underline{Solution}}}\::

&lt;TABLE BORDER="15"    WIDTH="10%"   CELLPADDING="15" CELLSPACING="1"&gt;</p><p>   </p><p>   &lt;TR&gt;</p><p>      &lt;TH&gt;ᏟᏞᎪՏՏ ᏆΝͲᎬᎡᏙᎬᏞ&lt;/TH&gt;</p><p>   &lt;TH&gt;ҒᎡᎬϘႮᎬΝᏟᎽ&lt;/TH&gt;</p><p>  &lt;TH&gt;ᑕ.ᖴ.&lt;/TH&gt;</p><p></p><p>   &lt;TR ALIGN="CENTER"&gt;</p><p>      &lt;TD&gt;0-6&lt;/TD&gt;</p><p>      &lt;TD&gt;4&lt;/TD&gt; </p><p>&lt;TD&gt;4&lt;/TD&gt;</p><p></p><p>&lt;/TR&gt;&lt;TR ALIGN="CENTER"&gt;</p><p>      &lt;TD&gt;6-12&lt;/TD&gt;</p><p>      &lt;TD&gt;x&lt;/TD&gt; &lt;TD&gt;4+x&lt;/TD&gt; </p><p>   &lt;/TR&gt; </p><p></p><p>  &lt;TR ALIGN="CENTER"&gt;</p><p>      &lt;TD&gt;12-18&lt;/TD&gt;</p><p>      &lt;TD&gt;5&lt;/TD&gt; </p><p> &lt;TD&gt;9+x&lt;/TD&gt;</p><p>   &lt;/TR&gt; </p><p></p><p>&lt;TR ALIGN="CENTER"&gt;</p><p>      &lt;TD&gt;18-24&lt;/TD&gt;</p><p>      &lt;TD&gt;y&lt;/TD&gt; </p><p>&lt;TD&gt;9+x+y&lt;/TD&gt;</p><p>&lt;/TR&gt; </p><p></p><p>&lt;TR ALIGN="CENTER"&gt;</p><p>      &lt;TD&gt;24-30&lt;/TD&gt;</p><p>      &lt;TD&gt;1&lt;/TD&gt; </p><p>&lt;TD&gt;10+x+y&lt;/TD&gt;</p><p>   &lt;/TR&gt; </p><p></p><p> &lt;TR ALIGN="CENTER"&gt;</p><p>      &lt;TD&gt;&lt;/TD&gt;</p><p>      &lt;TD&gt;∑⨏ = 20&lt;/TD&gt; </p><p>&lt;TD&gt;&lt;/TD&gt;</p><p>    &lt;/TR&gt; </p><p></p><p>&lt;/TABLE&gt;

\sf\orange{10 \ + \ x \ + \ y \ = \ 20}

→ \:\: \sf\blue{x \ + \ y \ = \ 20 \ - \ 10}

→ \:\: \sf\orange{x \ + \ y \ = \ 10 \ ........(1)}

\bf\purple{Hence, \ Median \ class \ is \ 12-18}

\begin{cases}\sf\gray{Lower \ limit \ of  \  the \ Median \ Class,\: l \: = \ 12} \\ \sf\gray{Class \ width,\: h \ = \  6} \\ \sf\gray{C.F. \ = \ 4+x} \\ \sf\gray{Frequency \ of \ the  \ median  \ class \ = \ 5}\\ \sf\gray{\frac{n}{2} \ = \ \frac{20}{2} \ = \ 10}\end{cases}

{\boxed{\bf{\red{Median \ = \ l \ + \ \dfrac{\frac{n}{2} \ - \ cf}{f} \ \times \ h}}}}

\longrightarrow\:\:\sf\purple{14.4 \ = \ 12 \ + \ \dfrac{10 \ - \ (x \ + \ 4)}{5} \ \times \ 6}

\longrightarrow\:\:\sf\green{14.4 \ = \ 12 \ + \ \dfrac{6 \ \times \ (10 \ - \ x \ - \ 4}{5}}

\longrightarrow\:\:\sf\purple{12 \ = \ 36 \ - \ 6x}

\longrightarrow\:\:\sf\green{6x \ = \ 36 \ - \ 12}

\longrightarrow\:\:\sf\purple{6x \ = \ 24}

\longrightarrow\:\:\sf\green{x \ = \ \dfrac{\cancel{24}}{\cancel{6}}}

\longrightarrow\:\:\sf\underline\red{x  \ =  \ 4}

\dag\:\:\bf\underline\pink{Putting \ x \ value \ in \ eq \ (1)}

\mapsto\:\:\sf\purple{x \ + \ y \ = \ 10}

\mapsto\:\:\sf\green{ 4 \ + \ y \ = \ 10}

\mapsto\:\:\sf\purple{y \ = \ 10 \ - \ 4}

\mapsto\:\:\sf\underline\red{y \ = \ 6}

\bf\orange{Hence}\begin{cases}\bf\underline\red{\:x \ = \ 4 \:}\\ \bf\underline\red{\:y \ = \ 6\:}\end{cases}


Anonymous: Great :)
Similar questions