Math, asked by babita57, 1 year ago

the median of the following data is 20.75 find the missing frequency x and y a if the total frequency is hundred

Answers

Answered by dreamrob
7

Given :

Median = 20.75

Total frequency = 100

Class Interval     Frequency

0 - 5                          7

5 - 10                        10

10 - 15                       x

15 - 20                     13

20 - 25                     y

25 - 30                    10

30 - 35                    14

35 - 40                     9

To find :

The missing frequency x and y.

Solution :

CI                 f            cf    

0 - 5             7           7

5 - 10            10        17

10 - 15           x          17 + x

15 - 20          13        30 + x

20 - 25         y         30 + x + y

25 - 30         10       40 + x + y

30 - 35         14       54 + x + y

35 - 40         9        63 + x + y

63 + x + y = 100

x + y = 100 - 63

x + y = 37               ......... (1)

Median = L + \frac{(n/2) - cf}{f} *w

Where,

L is the lower class boundary of the group containing the median

n is the total number of values

cf is the cumulative frequency of the groups before the median group

f is the frequency of the median group

w is the group width

20.75 = 20 + \frac{100/2 -(30+x)}{y}*5

20.75 - 20 = (50 - 30 - x) / y × 5

0.75y = (20 - x) × 5

3/4 × y= 100 - 5x

3y = 400 - 20x

3y + 20x = 400                    .............(2)

Solve equation (1) and (2)

x + y = 37

20x + 3y = 400

Multiply equation (1) by 3 and subtract both the equations

3x    +  3y = 111

20x  + 3y = 400

(-)     (-)       (-)      

-17x = -289

17x = 289

x = 17

Putting value of x in equation (1)

x + y = 37

17 + y = 37

y = 37 - 17

y = 20

Therefore, the missing frequencies x and y are 17 and 20 respectively.

Attachments:
Answered by mageswarirtvm
0

Answer:

how 3/4 came and 3y has came

Similar questions