●The median of the following data is 50.find the value of pand q , if the sum of all the frequency is 90
Answers
Given :The median of the data is 50 and sum of all the frequencies is 90.
To Find :Find the values of p and q.
Solution :
Marks Frequency cf
20-30 p p
30-40 15 15+p
40-50 25 40+p
50-60 20 60+p
60-70 q 60+p+q
70-80 8 68+p+q
80-90 10 78+p+q
Median = 50
Sum of all frequency = p + 15 + 25 + 20 + q + 8 + 10 = 90
p + q = 90 - 78
p + q = 12
Now we will find the value of p and q by using the formula,
Median=L+\frac{\frac{n}{2}-cf }{f}\times cMedian=L+
f
2
n
−cf
×c
50=40+\frac{\frac{90}{2}-(15+p) }{25}\times 1050=40+ 25290−(15+p) ×10
50=40+\frac{45-(15+p)}{25}\times 1050=40+ 2545−(15+p)×10
50=40+(\frac{-2}{5}p) +5250=40+( 5−2p+52
50=\frac{-2}{5}p +5250= 5−2 p+52\frac{-2}{5}p=-25−2
p=−2
p = 5
∵ p + q = 12
put the value of p
5 + q = 12
q = 12 - 5
q = 7
value of p = 5 and q = 7
Step-by-step explanation: