Math, asked by shinubhai576, 11 months ago

The median of the following frequency distribution is 24 find the value of X

Attachments:

Answers

Answered by Alcaa
0

Answer:

Value of X = 25

Step-by-step explanation:

We are given following frequency distribution below;

  Age in years        No. of persons (f)          Cumulative frequency (cf)

       0 - 10                          5                                               5

      10 - 20                        25                                             30

      20 - 30                         x                                             30 + x

      30 - 40                        18                                            48 + x

      40 - 50                        7                                           55 + x    

                                    ∑f = 55 + x  

We are given the median of the  distribution is 24. Since 24 lies in the interval of 20 - 30, so the median class is 20 - 30.

Median formula = x_L + \frac{\frac{N}{2} - cf}{f_m} *c

where, x_L = lower limit of median class = 20

            N =  ∑f = 55 + x    

            f_m = frequency of median class = x

            cf = cumulative frequency of just above the median class = 30

             c = width of class interval = 10

So,  24 = 20 + \frac{\frac{55+x}{2} - 30}{x} *10

      24 - 20 = \frac{\frac{55+x}{2} - 30}{x} *10

            4 = \frac{\frac{55+x}{2} - 30}{x} *10

          0.4*x = \frac{55+x-60}{2}

           0.4*x = (x-5)/2

           0.4*x*2 = x - 5

             x - 0.8*x = 5

                x = 5/0.2 = 25

Therefore, value of missing frequency, x = 25 .

Similar questions