Math, asked by ramilammistry, 1 year ago

The median of the frequency distribution pf following table is 48 Then find the value of f
Variable = 10,20,30,40,50,60,70,80
frequency=4,2,1,f,0,3,5,8

Answers

Answered by nain31
19
 \begin{tabular}{|c|c|} \cline{1-2} Variable &amp;Frquency \\ \cline{1-2} 10 &amp;4<br /><br />\\ \cline{1-2} 20 &amp;2\\ \cline{1-2} 30&amp;1 \\ \cline{1-2} 40&amp;f \\ \cline{1-2} 50 &amp;0\\ \cline{1-2} 60 &amp;3\\ \cline{1-2} 70 &amp;5 \\ \cline{1-2} 80 &amp;8 \\\cline{1-2} \end{tabular}

And the mean of the following data is 48

We know

 \large \boxed{\mathsf{Mean = \dfrac{\Sigma xi}{\Sigma x} }}

So,

 \begin{tabular}{|c|c|c|} \cline{1-3} Variable &amp;Frquency&amp;x \times i\\\cline{1-3} 10 &amp;4&amp;40\\ \cline{1-3}20 &amp;2&amp;40\\ \cline{1-3}30&amp;1&amp;30\\ \cline{1-3} 40&amp;f&amp;40f \\ \cline{1-3} 50 &amp;0&amp;0\\ \cline{1-3} 60 &amp;3&amp;180\\ \cline{1-3} 70 &amp;5&amp;350 \\ \cline{1-3} 80 &amp;8&amp;640\\ \cline{1-3} \end{tabular}

 \begin{tabular}{|c|c|c|} \cline{1-3} Variable &amp;Frquency&amp;x \times i\\ \cline{1-3} 10 &amp;4&amp;40\\ \cline{1-3}20 &amp;2&amp;40\\ \cline{1-3} 30&amp;1&amp;30\\ \cline{1-3} 40&amp;f&amp;40f\\ \cline{1-3}50 &amp;0&amp;0\\ \cline{1-3}60 &amp;3&amp;180\\ \cline{1-3}70 &amp;5&amp;350 \\ \cline{1-3}80 &amp;8&amp;640 \\\cline{1-3}Total&amp;23+f&amp;1280+f \\\cline{1-3} \end{tabular}

Since,

 \mathsf{Mean = \dfrac{\Sigma xi}{\Sigma f}}

 \mathsf{Mean = \dfrac{1280+f}{23+f}}

Since,

Mean = 48

So,

 \mathsf{48 = \dfrac{1280+f}{23+f}}

 \mathsf{1104 + 23f = 1280+f}

 \mathsf{ 23f - f = 1280 - 1104}

 \mathsf{ 22f= 176}

 \mathsf{\dfrac{176}{8} = f }

 \large \boxed{\mathsf{f = 8}}

Shruthi123456: Amazing answer dii❤
Answered by vp0121675
0

Answer:

fffffffffffffffffffffffffffffffffffffffff

Step-by-step explanation:

mmmmmmmmmmmmmmmmmmmmmmmmmmm

Similar questions