Math, asked by ananyaaa1220, 11 months ago

The median of the mode of the following frequency distribution are known to be 27 and 26 respectively. Find the values of x and y.class interval 0-10,10-20,20-30,30-40,40-50.Frequency 3,x,20,12,y

Answers

Answered by knjroopa
9

Step-by-step explanation:

Given The median of the mode of the following frequency distribution are known to be 27 and 26 respectively. Find the values of x and y.class interval  0-10,10-20,20-30,30-40,40-50.Frequency 3,x,20,12,y

  • Given median = 27 and mode = 26
  • So N = 3 + x + 20 + 12 + y  
  •       = 35 + x + y
  • Therefore Mode lies in the 20 – 30 class and its frequency will be 20
  • So Mode = L + (fm – f1) / (fm – f1) + (fm – f2) x h
  •           26 = 20 + (20 – x / (20 – x) + (20 – 12) x 10
  •            6 = 200 – 10 x / 28 – x
  •           200 – 10 x = 168 – 6x
  •            Or 4x = 200 – 168
  •           Or x = 8
  • Now Median = l + N/2 – F / f x h
  • Now class interval for median = 20 – 30, so l = 20
  • So N/2 = 35 + x + y / 2
  •    F = 3 + x
  •  f = 20 and h = 10
  • Now 27 = 20 + 35 + x + y / 2 – (3 + x) / 20 x 10
  •           7 = 35 + 8 + y / 2 – 11 / 20 x 10
  •        7 = 35 + 8 + y – 22 / 2 x 2
  •          7 = 21 + y / 4
  •          21 + y = 28
  •           Or y = 7

Reference link will be

https://brainly.in/question/1167693

Answered by devikasabu1212
0

Answer:

a=8and b=7

Step-by-step explanation:

CI

f

cf

0 - 10

3

3 Չ

10-20

20-30

8

11

31

20

30-40

12

43

40-50

b

43+b

Median = 27

⇒ 27 = 20 + 10 ((43 + b)/2 - 11)/ 20

→7= ((21+ b)/4

⇒ 28 = (21+ b)

⇒ b = 7

Similar questions