Math, asked by jaiwanth888, 1 month ago

the mid point of (-5, 12) (9,-2) divides the join of the points (-8,-5) ; (7,10) in the ratio ?

Answers

Answered by xSoyaibImtiazAhmedx
0

Let mid point of A(-5, 12) , B(9,-2) be ~ P(x,y) and it divides the join of the points M(-8,-5) and N(7,10) in the ratio of

\large\bold{m\::\:n}

Now,

 \bold{( x , y )  \rightarrow \: ( \frac{ - 5  + 9}{2} , \frac{12 + ( - 2)}{2} )}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{ \rightarrow \: ( \frac{ - 4}{2} , \frac{12  - 2}{2} )}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{ \rightarrow \: ( { - 2} , \frac{10}{2} )}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{ \rightarrow \: ( { - 2} , 5)}

So, coordinate point of P is (-2 , 5 )

A/Q,

 \bold{(-2 , 5 ) \:  \rightarrow( \frac{7m + ( - 8)n}{m + n} , \:  \frac{10m + ( - 5)n}{m + n} )}

 \bold{ \:   \:  \:  \: \:  \:  \: \:  \:  \:  \:  \: \rightarrow( \frac{7m  - 8n}{m + n} , \:  \frac{10m  - 5n}{m + n} )}

Now,

 \:  \:  \bold{ - 2 =  \frac{7m - 8n}{ m + n} }

\:  \:  \bold{ \implies \:  - 2m - 2n =  {7m - 8n}{ } }

\:  \:  \bold{ \implies \:  8n - 2n =  {7m  + 2m}{ } }

\:  \:  \bold{ \implies \:  6n =9m}

\:  \:  \bold{ \implies \:  \frac{m}{n}  =  \frac{6}{9} }

\:  \:  \bold{ \implies \:  \frac{m}{n}  =  \frac{2}{3} }

\:  \:  \bold{ \implies \:    \large\boxed{\bold{ m :n =  {2} : {3} } }}

\Large{\colorbox{yellow}{\underline{\underline{♣Answer♣:—\:\:2\:\:: \:  3} }}}

Similar questions