The mid-point P of the line segment joining the points A(-10,4) and B(-2,0) lies on the line segment joining the points .
Answers
Answered by
5
Hello dear,
Given points are A(-10, 4) and B(-2, 0)
P is mid point of AB = -10-2 2 4+0 2 = [-6, 2]
Let the ratio m:n and points C(-9,-4) D(-4,y).
P divides the CD in the ratio m:n then -4m - 9n m+n, my - 4n m + n = (-6, 2)
equating co-ordinates on both sides we get
- 4m - 9n m+n = -6
⇒ -4m - 9n = -6m - 6n
⇒ 3m = 3n
⇒ m n = 3 2 ----------(1)
Now my - 4n = 2(m+n)
⇒ m(y - 2) = 6n
⇒ m n = y - 2 6
⇒ 3 2 = y - 2 6
⇒ y - 2 = 9
∴ y = 11.
I hope you understand very well dear :-)
Given points are A(-10, 4) and B(-2, 0)
P is mid point of AB = -10-2 2 4+0 2 = [-6, 2]
Let the ratio m:n and points C(-9,-4) D(-4,y).
P divides the CD in the ratio m:n then -4m - 9n m+n, my - 4n m + n = (-6, 2)
equating co-ordinates on both sides we get
- 4m - 9n m+n = -6
⇒ -4m - 9n = -6m - 6n
⇒ 3m = 3n
⇒ m n = 3 2 ----------(1)
Now my - 4n = 2(m+n)
⇒ m(y - 2) = 6n
⇒ m n = y - 2 6
⇒ 3 2 = y - 2 6
⇒ y - 2 = 9
∴ y = 11.
I hope you understand very well dear :-)
Similar questions