Math, asked by Anonymous, 6 months ago

The middle term in the expansion of
 {(2x +  \dfrac{1}{x} )}^{12}
is ..?​

Answers

Answered by BʀᴀɪɴʟʏAʙCᴅ
13

\huge\mathcal{\mid{\mid{\underline{\pink{Good\: Evening\:}}}{\mid{\mid}}}} \\

Qᴜᴇsᴛɪᴏɴ ;-

The middle term in the expansion of

 \sf {(2x + \dfrac{1}{x} )}^{12}

is _ .

\huge{\orange{\boxed{\fcolorbox{lime}{aqua}{\pink{ANSWER}}}}} \\

 =  >  \: n \: is \: even, \: so \:  (\frac{n}{2}  + 1)^{th} \: term \: . \\  \\  =  > ( \frac{12}{2}  + 1) \\  \\  =  >  {7}^{th}  \: term

We know that,

\longmapsto~\sf\pink{T_{r\:+\:1}~=~^{n}C_{r}\:x^{n\:-\:r}\:y^r\:} \\

Where,

  • r = 7

  • n = 12

  • x = 2x

  • y = 1/x

\longmapsto~\rm{T_{7\:+\:1}~=~^{12}C_{7}\:(2x)^{12\:-\:7}\:(\dfrac{1}{x})^7\:} \\

\longmapsto~\rm{T_{6}~=~^{12}C_{7}\:(2x)^{5}\:\dfrac{1}{x^7}\:} \\

\longmapsto~\rm{T_{6}~=~^{12}C_{7}\times{2^5}\times{x^{5}}\times{x^{-7}}\:} \\

\longmapsto~\rm{T_{6}~=~792\times{32}\times{x^{-2}}\:} \\

\longmapsto~\rm\green{T_{6}~=~25344~{x^{-2}}\:} \\

Answered by rudraraj4809
1

QUESTION

The middle term in the expansion of

 {(2x + \dfrac{1}{x} )}^{12}

is ..?

ANSWER

=>niseven,so(

2

n

+1)

th

term.

=>(

2

12

+1)

=>7

th

term

We know that,

\begin{gathered}\longmapsto~\sf\pink{T_{r\:+\:1}~=~^{n}C_{r}\:x^{n\:-\:r}\:y^r\:} \\ \end{gathered}

⟼ T

r+1

=

n

C

r

x

n−r

y

r

Where,

r = 7

n = 12

x = 2x

y = 1/x

\begin{gathered}\longmapsto~\rm{T_{7\:+\:1}~=~^{12}C_{7}\:(2x)^{12\:-\:7}\:(\dfrac{1}{x})^7\:} \\ \end{gathered}

⟼ T

7+1

=

12

C

7

(2x)

12−7

(

x

1

)

7

\begin{gathered}\longmapsto~\rm{T_{6}~=~^{12}C_{7}\:(2x)^{5}\:\dfrac{1}{x^7}\:} \\ \end{gathered}

⟼ T

6

=

12

C

7

(2x)

5

x

7

1

\begin{gathered}\longmapsto~\rm{T_{6}~=~^{12}C_{7}\times{2^5}\times{x^{5}}\times{x^{-7}}\:} \\ \end{gathered}

⟼ T

6

=

12

C

7

×2

5

×x

5

×x

−7

\begin{gathered}\longmapsto~\rm{T_{6}~=~792\times{32}\times{x^{-2}}\:} \\ \end{gathered}

⟼ T

6

= 792×32×x

−2

\begin{gathered}\longmapsto~\rm\green{T_{6}~=~25344~{x^{-2}}\:} \\ \end{gathered}

⟼ T

6

= 25344

Similar questions