Math, asked by meghanaek89, 3 months ago

The midpoint of the line joining the points A(8, 2) and B(4, 4) is _____​

Answers

Answered by LoverBoy346
2

Answer:

P(6,3)

Step-by-step explanation:

 \huge   \boxed{\mathbb{ \color{violet} \colorbox{pink}{Given :-}}}

A(8,2) = x_1,y_1

B(4, 4) = x_2,y_2

 \bold{Let  \: the \:  points \:  be  \: P}

 \mathtt{Using  \: the  \: mid \:  point  \: formula,}

 \frac{x2 + x1}{2} \:  \:   and \:  \:  \frac{y2 + y1}{2}

x =  \frac{4 + 8}{2} , y = \frac{4 + 2}{2}

x =  \frac{12}{2} ,y =  \frac{6}{2}

 \boxed{(x = 6,y = 3)}

Hence the coordinates of point P are (6,3)

Answered by FiercePrince
13

Given that, The Co-ordinates of endpoints of line are A(8, 2) and B(4, 4) .

Need To Find : Midpoint of the points A and B ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\sf Let's  \:say \:that \:\pmb{\bf (x_m \:,\:y_m ) }\:be \:the \:midpoint \:of \: A \:and \: B \:\\

Given that ,

  • The Co-ordinates of endpoints of line are A(8, 2) and B(4, 4) .

Here ,

  • x₁ = 8
  • x₂ = 4
  • y₁ = 2
  • y₂ = 4

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀¤ Formula for Midpoint is given by :

\qquad \dag \:\:\:\:\underline {\boxed {\frak { \:\:\:Midpoint \:\:=\:\: \Bigg( \dfrac{(x_1 + x_2 )}{2} \:\:,\:\: \dfrac{(y_1 + y_2 )}{2}\:\:\Bigg)}}}\\\\

⠀⠀⠀⠀⠀⠀Here ,x₁ , x₂ , y₁ , y₂ are the points of line .

\qquad:\implies \sf ( x_m \:,\: y_m) \:=\:  \Bigg( \dfrac{(x_1 + x_2 )}{2} \:\:,\:\: \dfrac{(y_1 + y_2 )}{2}\:\:\Bigg) \:\\\\\qquad:\implies \sf ( x_m \:,\: y_m) \:=\:  \Bigg(\dfrac{( 8 + 4 )}{2} \:\:,\:\: \dfrac{( 2 + 4 )}{2}\:\:\Bigg)\:\\\\\qquad:\implies \sf ( x_m \:,\: y_m) \:=\:  \Bigg( \dfrac{( 12 )}{2} \:\:,\:\: \dfrac{( 6 )}{2}\:\:\Bigg) \:\\\\\qquad:\implies \sf ( x_m \:,\: y_m) \:=\:  \Bigg(\dfrac{ 12 }{2} \:\:,\:\: \dfrac{ 6 }{2}\:\:\Bigg) \:\\\\ \qquad:\implies \underline {\boxed{\frak {( x_m \:,\: y_m) \:=\:  ( 6 \:\:,\:\:3\:\:) \:}}}\\\\

\qquad \therefore \underline {\sf Hence,  \:Midpoint \:of \:line \:A \:\:and \:B \:is \:\pmb{\bf ( \:6\:,\:3\:)\:}\:.}\\\\

Similar questions