Math, asked by debashispanda4244, 1 year ago

The midpoint of the line segment joining the points (-5,7) and (-1,3) is

Answers

Answered by LeonardEuler
2

Hello !!

Find the [xM].

xM = (xA + xB)/2

xM = (-5 + (-1))/2

xM = (-5 - 1)/2

xM = (-6)/2

xM = -3

Find the [yM].

yM = (yA + yB)/2

yM = (7 + 3)/2

yM = 10/2

yM = 5

Final result : M(-3 , 5).

I hope I have collaborated and have a great day !

Answered by charliejaguars2002
0

Answer:

\Huge\boxed{\mathsf{(-3,5)}}}

Step-by-step explanation:

To solve this problem, first, you have to use the slope formula of \displaystyle \mathsf{\frac{Y_2-Y_1}{X_2-X_1}=\frac{RISE}{RUN}  }.

MIDPOINT FORMULA AND SLOPE FORMULA:

\Rightarrow \displaystyle \mathsf{\frac{X_2+X_1}{2}=\frac{Y_2+Y_1}{2}  }

\displaystyle \mathsf{Y_2=3}\\\\\displaystyle \mathsf{Y_1=7}\\\\\displaystyle \mathsf{X_2=(-1)}}}\\\\\displaystyle \mathsf{X_1=(-5)}}}\\\\

Solve.

\displaystyle \mathsf{\frac{1-5}{2} \quad \frac{3+7}{2}=\boxed{\mathsf{\rightarrow (-3,5)}} }}

So, the correct answer is (-3,5).

Similar questions