Physics, asked by tk49462, 11 months ago

The minimum deviation angle occurred by a prism of prism angle
60° is 60°. Calculate the refractive index of the material of prism.​

Answers

Answered by Anonymous
8

 \mathfrak{ \huge{ \red{ \underline{ \underline{ANSWER}}}}} \\  \\  \implies \sf \blue{ \bold{angle \: of \: prism \: (A) =  \red{60 \degree}}} \\  \\  \implies \sf \blue{ \bold{minimum \: deviation \:  (\delta \: m) =  \red{60 \degree}}} \\  \\  \implies \sf \boxed{ \bold{ \pink{refractive \: index \:  (\eta) =   \orange{\frac{ \sin( \frac{A +  \delta \: m}{2} ) }{ \sin( \frac{A}{2} )} } }}} \\  \\  \implies \sf \eta =  \frac{ \sin( \frac{60 \degree + 60 \degree}{2} ) }{ \sin( \frac{60 \degree}{2} ) }  =  \frac{ \sin60 \degree}{ \sin30 \degree}  =  \sqrt{3 }  \\  \\  \implies \sf   \huge{\blue{ \underline{ \pink{\boxed{ \bold{ \orange{ \eta =  \sqrt{3} }}}}}}}

Answered by Anonymous
6

  \sf\huge{ \pink{ \underline{ \underline{Answer}}}} \\  \\  \longrightarrow \sf \: A = 60 \degree \\  \\  \longrightarrow \sf \delta \: m = 60 \degree \\  \\  \sf  \implies\boxed{ \red{ \eta =  \frac{ \sin( \frac{A +  \delta \: m}{2} ) }{ \sin( \frac{A}{2} ) } }} \\  \\  \longrightarrow \sf \eta =  \frac{ \sin( \frac{60 + 60}{2} ) }{ \sin( \frac{60}{2} ) }  =  \frac{ \sin(60) }{ \sin(30) }  =  \sqrt{3}  \\  \\  \implies \sf \boxed{ \orange{ \bold{ \eta =  \sqrt{3}}}}

Similar questions