Chemistry, asked by ishani112005, 2 months ago

The minimum energy required to overcome the nuclear attractive forces of Ag atom is 5.52 x 10-19 J. What

will be kinetic energy of ejected electrons if the incident radiation is of λ=360 Å. Use h=6.626 x 10-34 J-s)​

Answers

Answered by nirman95
1

Given:

The minimum energy required to overcome the nuclear attractive forces of Ag atom is 5.52 x 10-19 J.

To find:

Kinetic energy of ejected electrons?

Calculation:

So, we will apply EINSTEIN'S PHOTOELECTRIC EFFECT EQUATION as follows:

 \sf \: KE =  \dfrac{hc}{ \lambda}  -  w_{0}

 \sf  \implies\: KE =  \dfrac{6.6 \times  {10}^{ - 34} \times (3 \times  {10}^{8}  )}{ 360 \times  {10}^{ - 10} }  - (5.52 \times  {10}^{ - 19} )

 \sf  \implies\: KE =  \dfrac{19.8 \times  {10}^{ - 26}}{ 3.6 \times  {10}^{ - 8} }  - (5.52 \times  {10}^{ - 19} )

 \sf  \implies\: KE = ( 5.5 \times  {10}^{ - 18} ) - (5.52 \times  {10}^{ - 19} )

 \sf  \implies\: KE = ( 55 \times  {10}^{ - 19} ) - (5.52 \times  {10}^{ - 19} )

 \sf  \implies\: KE  \approx \: 49.5 \:  \times  {10}^{ - 19}  \: joule

So, kinetic energy of electrons is 49.5 × 10^(-19) Joule.

Similar questions