Physics, asked by kichuwalia0101, 6 months ago

The minimum speed of projection required to strike the top of a pole of height 8m and located at a horizontal distance of 6m from the point of projection is nearly (g= 10m/s^(2))​

Answers

Answered by amitnrw
17

Given : projection required to strike the top of a pole of height 8m and located at a horizontal distance of 6m from the point of projection

To Find : Minimum Speed to strike the top of a pole

a) 10m/s

b) 12m/s

c) 13.42 m/s

d) 15.25 m/s

Solution:

Let say velocity = V at angle α

T is the the time of strike

VCosα.T = 6

=> VCosα. = 6/T

S = ut + (1/2)at²

t = T , u =  VSinα  ,a  = - g = -10

8  = VSinα.T + (1/2)(-g)T²

=> 8 = VSinα.T - (1/2)(10)T²

=> 8 = VSinα.T - 5T²

=> VSinα.T = 8 + 5T²

=> VSinα = 8/T + 5T

V²Cos²α + V²Sin²α = V²   ∵  Cos²α +  Sin²α =

=>  V² = (6/T)² + (8/T + 5T)²

V²  will be minimum when V is minimum

 V² = Z

=> Z = (6/T)² + (8/T + 5T)²

=> Z  = 36/T²  + 64/T²  + 25T²  + 80

=> Z = 100/T² + 25T² + 80

dZ/dT = -200/T³  + 50T  

-200/T³  + 50T = 0

=> T⁴  = 4

=> T² = 2

=>  T  = √2

d²Z/dT² = 600/T⁴  + 50 > 0

Hence minimum at T² = 2 or   T  = √2

V² =  100/T² + 25T² + 80

=> V² =  50 + 50 + 80

=>  V² =  180

=> V = 13.416  m/s

=> V = 13.42  m/s

Learn More:

A body is projected obliquely from the horizontal ground. Its speed is ...

https://brainly.in/question/24656415

A body is projected obliquely from the horizontalground. Its speed is ...

https://brainly.in/question/24661399

Answered by nirman95
6

To find:

The minimum speed of projection required to strike the top of a pole of height 8m and located at a horizontal distance of 6m from the point of projection is ?

Calculation:

The general expression for trajectory of Projectile is :

 \boxed{ \bold{ \therefore \: y = x \tan( \theta)  -  \dfrac{g {x}^{2} }{2 {u}^{2} { \cos}^{2}  ( \theta)} }}

Now , since object passes through coordinate (6,8) , we can put those values:

\implies \: 8 = 6 \tan( \theta)  -  \dfrac{g {(6)}^{2} }{2 {u}^{2} { \cos}^{2}  ( \theta)}

\implies \: 8 = 6 \tan( \theta)  -  \dfrac{10 \times 36}{2 {u}^{2} { \cos}^{2}  ( \theta)}

\implies \: 8 = 6 \tan( \theta)  -  \dfrac{180}{ {u}^{2} { \cos}^{2}  ( \theta)}

\implies \: 4 = 3 \tan( \theta)  -  \dfrac{90}{ {u}^{2} { \cos}^{2}  ( \theta)}

\implies \:  \dfrac{90}{ {u}^{2} { \cos}^{2}  ( \theta)}  = 3  \tan( \theta)  - 4

\implies \:  \dfrac{90 \:  { \sec}^{2} ( \theta)}{ {u}^{2}} = 3  \tan( \theta)  - 4

\implies \:  \dfrac{90 \:  \{1 +  { \tan}^{2} ( \theta) \}}{ {u}^{2}} = 3  \tan( \theta)  - 4

\implies \:   {u}^{2}  = \dfrac{90 \:  \{1 +  { \tan}^{2} ( \theta) \}}{3  \tan( \theta)  - 4}

Now , if u has minimum value , then u² will also have minimum value :

\implies \:   Z = \dfrac{90 \:  \{1 +  { \tan}^{2} ( \theta) \}}{3  \tan( \theta)  - 4}

For minima , \dfrac{dZ}{d\theta} should be zero and \dfrac{d^{2}Z}{d\theta^{2}} should be > 0 :

\implies \:    \dfrac{dZ}{d \theta} = 0

\implies \:    3 { \sec }^{2} ( \theta)  \{1 +  { \tan}^{2}( \theta) \} -  \{3  \tan( \theta) - 4 \} \{2  \tan( \theta)  { \sec}^{2}( \theta) \}  = 0

\implies \:    3   \{1 +  { \tan}^{2}( \theta) \} -  \{3  \tan( \theta) - 4 \} \{2  \tan( \theta)   \}  = 0

\implies \:    3  { \tan}^{2}( \theta) - 8 \tan( \theta)  - 3  = 0

\implies \:     \bigg \{3  \tan( \theta) + 1 \bigg \}  \bigg \{ \tan( \theta)  - 3 \bigg \}= 0

Either \tan(\theta) =- \dfrac{1}{3} \:or \: 3

After 2nd order differentiation (I haven't shown the 2° differentiation) , we will see that \dfrac{d^{2}Z}{d\theta^{2}} > 0 , when \tan(\theta)=3.

Now continuing with the 1st equation:

\implies \:   {u}^{2}  = \dfrac{90 \:  \{1 +  { \tan}^{2} ( \theta) \}}{3  \tan( \theta)  - 4}

\implies \:   {u}^{2}  = \dfrac{90 \:  \{1 +  { 3}^{2} \}}{3( 3)- 4}

\implies \:   {u}^{2}  = \dfrac{90 \:  \{1 +  9\}}{5}

\implies \:   {u}^{2}  = 180

\implies \:   u \approx \: 13.41 \: m {s}^{ - 1}

So, minimum velocity with which the Projectile can pass through coordinate (6,8) is 13.41 m/s.

  • My method is much more difficult than the previous answer.

  • I would recommend you to follow the previous answer by Amitnrw sir and use that method in subjective exams.
Similar questions