Math, asked by johinjohny1, 9 months ago

The minimum value of 3 cos x + 4 sin x + 8 is​

Answers

Answered by rajdheerajcreddy
0

Answer:

13

Step-by-step explanation:

FORMULA :

The range of a trigonometric  expression , acosx+bsinx+c is given by

[c-\sqrt{a^{2}+b^{2} },c+\sqrt{a^{2}+b^{2}    } ]. i.e., the maximum is c+\sqrt{a^{2}+b^{2}    } .

So maximum value of 3cosx+4sinx+8 = 8+\sqrt{3^{2}+4^{2} }

                                                               = 8 + 5 = 13.

Similar questions