The minimum value of cos 2 thetha + cos thetha
for real values of thetha
Answers
Answered by
0
Answer:
-\frac{9}{8}
Step-by-step explanation:
Let y = cosx + cos2x
Now, we will expand cos2x using double angle rule:
y=cosx+2cos^2x-1\\\\y=2(cos^2x+\frac{1}{2} cosx)-1\\\\y=2(cos^2x+2cosx*\frac{1}{4}+\frac{1}{16} -\frac{1}{16})-1\\\\y=2(cosx+\frac{1}{4} )^2-\frac{1}{8} -1\\\\\y=2(cosx+\frac{1}{4} )^2-\frac{9}{8}
Therefore, the minimum value is -\frac{9}{8}
Similar questions
Math,
5 months ago
Math,
5 months ago
History,
5 months ago
Math,
10 months ago
Physics,
10 months ago
CBSE BOARD X,
1 year ago
India Languages,
1 year ago