Math, asked by shamimcalculus1234, 1 year ago

The minimum value of
 \sqrt{x {}^{2} +  \frac{1}{y {}^{2} }  } +  \sqrt{ y {}^{2}   +  \frac{1}{z {}^{2} } }  +  \sqrt{z {}^{2}  +  \frac{1}{x {}^{2} } }  = a
Find
a^{2}

Answers

Answered by newton82
0
Mark brainelist bro please
 \sqrt{ {x}^{2} + \frac{1}{ {y}^{2} } } + \sqrt{ {y}^{2} + \frac{1}{ {z}^{2} } } + \sqrt{ {z}^{2} + \frac{1}{ {x}^{2} } } = a \\ on \: squaring \: both \: sides \: we \: have \\ = > {a}^{2} = ( { \sqrt{ {x}^{2} + \frac{1}{ {y}^{2} } } + \sqrt{ {y}^{2} + \frac{1}{ {z}^{2} } } + \sqrt{ {z}^{2} + \frac{1}{ {x}^{2} } }})^{2} \\ = > {a}^{2} = x + \frac{1}{y} + y + \frac{1}{z} + z + \frac{1}{x} + 2 \\ = > {a}^{2} = \frac{ {x}^{2} yz + xz + x {y}^{2} z + xy + xy {z}^{2} + yz + 2xyz }{xyz}

shamimcalculus1234: This is not that easy..... i finished doing this and your answer is wrong
Similar questions