Math, asked by shawpagla123, 10 months ago

the minimum value of the expression (3b+4c)/a + (4c+a)/3b + (a+3b)/4c

Answers

Answered by amitnrw
5

minimum value of (3b+4c)/a + (4c+a)/3b + (a+3b)/4c  = 6

Step-by-step explanation:

assuming a , b & c are positive

(3b+4c)/a + (4c+a)/3b + (a+3b)/4c

= {12bc(3b + 4c)  + 4ac(4c + a) + 3ab(a + 3b) } / 12abc

= (36b²c + 48bc²  + 16ac² + 4a²c + 3a²b + 9ab² ) / 12abc

= ( 4c(a² + 9b²)  + 3b(a² + 16c²) + a(9b² + 16c²) ) / 12abc

= ( 4c ((a - 3b)² + 6ab )  + 3b( (a - 4c)² + 8ac) + a( (3b - 4c)² + 24bc) ) /12abc

= (4c (a - 3b)² + 3b (a - 4c)² + a (3b - 4c)²  + 24abc + 24abc + 24abc )/12abc

minumum value of (a - 3b)² = 0   (a - 4c)²  = 0   (3b - 4c)²  = 0

= 72abc/12abc

= 6

minimum value of (3b+4c)/a + (4c+a)/3b + (a+3b)/4c  = 6

if a , b , c are not necessarily positive

then ( 4c ((a + 3b)² - 6ab )  + 3b( (a + 4c)² - 8ac) + a( (3b + 4c)² - 24bc) ) /12abc

= - 72abc/12abc

= - 6

Learn More

If 9a^2+ 16b^2 +c^2 +25 =24{a+b} then value of 3a+4b+5c in numeric value is

https://brainly.in/question/12833474

https://brainly.in/question/12371255

Answered by priyanshisinghbest11
2

Answer:

answer is 6

pls mark as brainiest

Step-by-step explanation:

Similar questions