Math, asked by Snehagupta2004, 7 months ago

The minimum value of the function f(x) = 2x4 – 3x2 + 2x – 5, x ∈ [–2, 2] is

Answers

Answered by sonuvuce
4

The minimum value of the function f(x) = 2x⁴ – 3x² + 2x – 5 is ₋8

Step-by-step explanation:

Given:

Function f(x)=2x^4-3x^2+2x-5      x\in [-2,2]

To find out:

The minimum value of the function f(x)

Solution:

f(x)=2x^4-3x^2+2x-5

f'(x)=8x^3-6x+2

Let p(x)=8x^3-6x+2

p(-1)=8(-1)^3-6(-1)+2

\implies p(-1)=-8+6+2

\implies p(-1)=0

Therefore, x = -1 is a zero of the polynomial p(x)

\therefore p(x)=(x+1)(8x^2-8x+2)

\implies p(x)=4(x+1)(4x^2-4x+1)

\implies p(x)=4(x+1)[(2x)^2-2\times 2x\times 1+1^2]

\implies p(x)=4(x+1)(2x-1)^2

Therefore,

f'(x)=4(x+1)(2x-1)^2

For maxima or minima

f'(x)=0

\implies 4(x+1)(2x-1)=0

This gives us

x=-1, x=\frac{1}{2}

Now

f"(x)=24x^2-6

At x = -1

f"(-1)=24-6=18>0

i.e. at x = -1 the function attains minima in [-2,2]

Therefore, minimum value of the function is at x = -1

f(-1)=2(-1)^4-3(-1)^2+2(-1)-5

\implies f(-1)=2-3-2-5=-8

Hope this answer is helpful.

Know More:

Q: Find the minimum value of the function f(x) = x2-6x +8 .

Click Here: https://brainly.in/question/14990255

Q: Find local max. & min. values of the function f given by f(x)=3x^4+4x^3-12x^2+12 .

Click Here: https://brainly.in/question/157680

Similar questions