Math, asked by Nabhonil35361, 11 months ago

The minimum value of the polynomial p(x) = 3x^2 - 5x + 2 is ?in kannada

Answers

Answered by Anonymous
3

Given \:  \: Question \:  \: Is \:  \\  find \: minimum \:  \: of \: p(x) \: if \\  \\  p(x) = 3x {}^{2}  - 5x  + 2 \\  \\ Answer \:  \\  \\ \:  \: 3x {}^{2}  - 5x + 2 =  p(x)  \\  \\ Multiply \:  \:  both \: sides \: by \:  \:  \frac{1}{3}  \\  \\ x {}^{2}  -  \frac{5x}{3}  +  \frac{2}{3}  =  \frac{p(x)}{3} \\  \\ x {}^{2}  - 2(1)( \frac{5x}{6} ) +  \frac{5 {}^{2} }{6 {}^{2} }  -  \frac{5 {}^{2} }{6 {}^{2} }  +  \frac{2}{3}  =  \frac{p(x)}{3} \\  \\ (x  -   \frac{5}{6} ) {}^{2}  +  \frac{2}{3}  -  \frac{5 {}^{2} }{6 {}^{2} }  =  \frac{ p(x)}{3}  \\  \\ (x -  \frac{5}{6} ) {}^{2}  +  \frac{72 - 75}{3 \times 6 {}^{2} }  =  \frac{p(x)}{3} \\  \\ (x -  \frac{5}{6} ) {}^{2}  -  \frac{1}{6 {}^{2} }  =  \frac{p(x)}{3}  \\  \\Logically \:  \: \:  \\  \\ p(x) \:  \: will \: \:  be \:  \: minimum \:  \: when \:  \: (x -  \frac{5}{6} ) {}^{2}  \\ is \: \:  minimum \:  \\ And \:  \\ the \: minimum \:  \: value \:  \: of \:  \: (x -  \frac{5}{6} ) {}^{2}  \:  \: is \:  \: zero \\  \\ 0 -  \frac{1}{6 {}^{2} }  =  \frac{p(x)}{3}  \\  \\ p(x) =  -  \frac{3}{6 {}^{2} }  \\  \\  p(x) =   - \frac{1}{12}  \\  \\ therefore \:  \: the \: minimum \: value \: of \:\\ p(x) = 3x {}^{2}  - 5x + 2 \:  \: is \\  \\   - \frac{1}{12}

Similar questions