Math, asked by harshitsingh210, 10 months ago

The minute hand of a clock is root 21cm long. Find the area described by the minute hand between 8Am and 8.25Am.
Plz provide solution....

Answers

Answered by Anonymous
14

\huge\underline\blue{\sf Answer:}

\large\red{\boxed{\sf Area(A)=27.5{cm}^{2} }}

\huge\underline\blue{\sf Solution:}

\large\underline\pink{\sf Given: }

  • Radius (r) =\sf{\sqrt{21}}

\large\underline\pink{\sf To\:Find: }

  • Area described by the minute hand between 8 am and 8.25 am = ?

━━━━━━━━━━━━━━━━━━━━━━━━

We know that ,

\large{♡}\large{\boxed{\sf Area\:of\:Sector(A)={\frac{\theta}{360°}}×πr^{2}}}

Calculation of \sf{\theta}

Angle subtended by minute hand 60 mins= 360°

\large{\sf 1min={\frac{360}{60}}\implies 6°}

Therefore ,

\large{\sf 25min=6°×25 \implies 150° }

On putting value :

\large\implies{\sf {\frac{150}{360}}×3.14×\sqrt{21}^2}

\large\implies{\sf {\frac{15}{36}}×3.14×21}

\large\implies{\sf 27.5{cm}^{2}}

\huge\red{♡}\large\red{\boxed{\sf Area(A)=27.5{cm}^{2} }}

Answered by Shreya091
142

\huge{\boxed{\boxed{\mathfrak{\purple{Answer:-}}}}}

{\bold{\underline{\underline{Given:-}}}}

Radius = 21cm

{\bold{\underline{\underline{To \: find :-}}}}

Area=

{\bold{\underline{\underline{Formula \: used:-}}}}

\huge\implies\frac {θ}{360°}\times\ πr^2

Calculate θ :-

Angle subtended by minute clock in 1min

\implies\frac {360°}{60} \\ \\ \implies\ θ =6°\\ \\  \implies\ for 25 min. = 25 \times\ 6° \\ \\ \implies\ θ= 150°

Now;put values in formula :-

\implies\ 150/360 \times\ 3.14 \times\ 21  \\ \\  \implies 27.5cm^2

\mathbb\red{Thanks..}

Similar questions